Spin Resonance Spectroscopy
Download Spin Resonance Spectroscopy full books in PDF, epub, and Kindle. Read online free Spin Resonance Spectroscopy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Chandran Karunakaran |
Publisher | : Elsevier |
Total Pages | : 380 |
Release | : 2018-01-02 |
Genre | : Science |
ISBN | : 012813609X |
Spin Resonance Spectroscopy: Principles and Applications presents the principles, recent advancements and applications of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) in a single multi-disciplinary reference. Spin resonance spectroscopic techniques through NMR and EPR are widely used by chemists, physicists, biologists and medicinal chemists. This book addresses the need for new spin resonance spectroscopy content while also presenting the principles, recent advancements and applications of NMR and EPR simultaneously. Ideal for researchers and students alike, the book provides a single source of NMR and EPR applications using a dynamic, holistic and multi-disciplinary approach. - Presents a highly interdisciplinary approach by including NMR and EPR applications in chemistry, physics, biology and biotechnology - Addresses both NMR and EPR, making its concepts and applications implementable in multiple resonance environments and core scientific disciplines - Features a broad range of methods, examples and illustrations for both NMR and EPR to aid in retention and underscore key concepts
Author | : Patrick Bertrand |
Publisher | : Springer Nature |
Total Pages | : 433 |
Release | : 2020-02-03 |
Genre | : Science |
ISBN | : 3030396630 |
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
Author | : Fabian Gerson |
Publisher | : John Wiley & Sons |
Total Pages | : 490 |
Release | : 2003-09-19 |
Genre | : Science |
ISBN | : 9783527302758 |
Electron spin resonance spectroscopy is the method used to determine the structure and life expectancy of a number of radicals. Written by Fabian Gerson and Walter Huber, top experts in the field of electron spin resonance spectroscopy, this book offers a compact yet readily comprehensible introduction to the modern world of ESR. Thanks to its comprehensive coverage, ranging from fundamental theory right up to the treatment of all important classes of organic radicals and triplet-state molecules that can be analyzed using ESR spectroscopy, this unique book is suitable for users in both research and industry. Instead of using complex mathematical derivations, the authors present a readily understandable approach to the field by interpreting sample spectra and classifying experimental data. In short, the ideal book for newcomers to the subject and an absolute must-have for everyone confronted with ESR spectroscopy and wanting to become acquainted with this widely-used method of analysis.
Author | : Derek Marsh |
Publisher | : CRC Press |
Total Pages | : 1165 |
Release | : 2019-12-09 |
Genre | : Medical |
ISBN | : 0429528671 |
Spin-label electron paramagnetic resonance (EPR) spectroscopy is a versatile molecular probe method that finds wide application in molecular biophysics and structural biology. This book provides the first comprehensive summary of basic principles, spectroscopic properties, and use for studying biological membranes, protein folding, supramolecular structure, lipid-protein interactions, and dynamics. The contents begin with discussion of fundamental theory and practice, including static spectral parameters and conventional continuous-wave (CW) spectroscopy. The development then progresses, via nonlinear CW-EPR for slower motions, to the more demanding time-resolved pulse EPR, and includes an in-depth treatment of spin relaxation and spectral line shapes. Once the spectroscopic fundamentals are established, the final chapters acquire a more applied character. Extensive appendices at the end of the book provide detailed summaries of key concepts in magnetic resonance and chemical physics for the student reader and experienced practitioner alike. Key Features: Indispensable reference source for the understanding and interpretation of spin-label spectroscopic data in its different aspects. Tables of fundamental spectral parameters are included throughout. Forms the basis for an EPR graduate course, extending up to a thorough coverage of advanced topics in Specialist Appendices. Includes all necessary theoretical background. The primary audience is research workers in the fields of molecular biophysics, structural biology, biophysical chemistry, physical biochemistry and molecular biomedicine. Also, physical chemists, polymer physicists, and liquid-crystal researchers will benefit from this book, although illustrative examples used are often taken from the biomolecular field. Readers will be postgraduate researchers and above, but include those from other disciplines who seek to understand the primary spin-label EPR literature.
Author | : Ashutosh Kumar Shukla |
Publisher | : Academic Press |
Total Pages | : 158 |
Release | : 2016-12-23 |
Genre | : Technology & Engineering |
ISBN | : 0128133643 |
Electron Spin Resonance in Food Science covers, in detail, the ESR identification of the irradiation history of food products and beverages to investigate changes that occur during storage, with an aim of improving hygienic quality and extending shelf-life with minimal tempering in nutritional profile. The book also includes ESR studies on the interaction of food items and packaging materials, along with a section on new approaches in ESR identification of irradiated foods that is followed by a chapter on international legislation relevant to irradiated food. A section on ESR applications in characterizing ROS/antioxidants in food items and lipid oxidation, including spin labeling, spin trapping and imaging applications is also covered, as are ESR applications in nutrition and pharmaceutics. - Serves as a complete reference on the application of ESR spectroscopy in food science research - Focuses on applications and data interpretation, avoiding extensive use of mathematics so that it fulfils the need of young scientists from different disciplines - Includes informative pages from leading manufacturers, highlighting the features of recent ESR spectrometers used in food science research - Includes information on different, active, worldwide groups in ESR characterization of food items and beverages
Author | : John A. Weil |
Publisher | : John Wiley & Sons |
Total Pages | : 690 |
Release | : 2007-01-09 |
Genre | : Science |
ISBN | : 0470084979 |
This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation phenomena, computer-based spectra simulation, biomedical aspects of EPR, and more Equips readers with sufficient knowledge of EPR techniques to go on in their specialized area of interest Provides problem sets and concise bibliographies at the end of each chapter, plus several tutorial appendices on topics like mathematical operations, quantum mechanics of angular momentum, experimental considerations.
Author | : John Wertz |
Publisher | : Springer Science & Business Media |
Total Pages | : 510 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9400940750 |
In the twenty-five years since its discovery by Zavoiskii, the technique of electron spin resonance (ESR) spectroscopy has provided detailed struc tural information on a variety of paramagnetic organic and inorganic sys tems. It is doubtful that even much later than 1945 any chemist would have been so bold as to predict the great diversity of systems which have proved amenable to study by ESR spectroscopy. In this book we have attempted to provide numerous examples of actual ESR spectra to illus trate the wide scope of application. No attempt has been made to present a comprehensive coverage of the literature in any field, but references to reviews and key articles are given throughout the book. This introductory textbook had its origin in lecture notes prepared for an American Chemical Society short course on electron spin resonance. The present version is the result of extensive revision and expansion of the original notes. Experience with such courses has convinced us that there are large numbers of chemists, physicists, and biologists who have a strong interest in electron spin resonance. The mathematical training of most of the short-course students is limited to calculus. Their contact with theories of molecular structure is largely limited to that obtained in an elementary physical chemistry course. It is to an audience of such background that this book is directed.
Author | : M. Ikeya |
Publisher | : World Scientific |
Total Pages | : 524 |
Release | : 1993 |
Genre | : Science |
ISBN | : 9789810212001 |
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
Author | : Arthur Schweiger |
Publisher | : |
Total Pages | : 608 |
Release | : 2001 |
Genre | : Medical |
ISBN | : 9780198506348 |
Pulse EPR (electron paramagnetic resonance) is one of the newest and most widely used techniques for examining the structure, function and dynamics of biological systems and synthetic materials. Until now, however, there has been no single text dedicated to this growing area of research. This text addresses the need for a comprehensive overview of Pulse EPR. The book covers the basic theory of pulse EPR, as well as a description and critical evaluation of the existing and emerging methods needed for selecting and conducting the proper experiment and analyzing the results. This is an indispensable reference for all scientists who need a thorough grounding in this increasingly popular field of spectroscopy.
Author | : Simonpietro Agnello |
Publisher | : John Wiley & Sons |
Total Pages | : 500 |
Release | : 2021-09-08 |
Genre | : Technology & Engineering |
ISBN | : 1119697328 |
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.