Spectroscopy For Surface Science
Download Spectroscopy For Surface Science full books in PDF, epub, and Kindle. Read online free Spectroscopy For Surface Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yip-Wah Chung |
Publisher | : Elsevier |
Total Pages | : 201 |
Release | : 2012-12-02 |
Genre | : Science |
ISBN | : 0080497780 |
Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-assisted data acquisition to tapping mode atomic force microscopy, the interactive component is especially helpful in conveying difficult concepts and retention of important information. The succinct style and organization of this practical guide is ideal for anyone who wants to get up to speed on a given topic in surface spectroscopy or phenomenon within a reasonable amount of time. - Both theory and practice are emphasized - Logical organization allows one to get up to speed on any given topic quickly - Numerous examples, questions for discussion and practice problems are included - The CD includes animation and interactive elements that help to convey difficult concepts
Author | : R. J. H. Clark |
Publisher | : John Wiley & Sons |
Total Pages | : 426 |
Release | : 1998-03-06 |
Genre | : Science |
ISBN | : 9780471974239 |
Dieser neueste Titel einer seit langem etablierten Reihe bietet eine Fülle von Informationen zu den aktuellsten Neuerungen auf dem Gebiet der Oberflächenspektroskopie. Geschrieben für den Experten, ist der Text jedoch auch für Fachleute angrenzender Gebiete verständlich gestaltet. Alle vorgestellten Verfahren werden kritisch bewertet und in die internationale Entwicklung eingeordnet. (02/98)
Author | : K. Oura |
Publisher | : Springer Science & Business Media |
Total Pages | : 443 |
Release | : 2013-03-14 |
Genre | : Science |
ISBN | : 3662051796 |
The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.
Author | : Gianangelo Bracco |
Publisher | : Springer Science & Business Media |
Total Pages | : 668 |
Release | : 2013-01-11 |
Genre | : Science |
ISBN | : 3642342434 |
The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.
Author | : E.F. Vansant |
Publisher | : Elsevier |
Total Pages | : 573 |
Release | : 1995-04-25 |
Genre | : Science |
ISBN | : 0080528953 |
Oxide surface materials are widely used in many applications, in particular where chemically modified oxide surfaces are involved. Indeed, in disciplines such as separation, catalysis, bioengineering, electronics, ceramics, etc., modified oxide surfaces are very important. In all cases, the knowledge of their chemical and surface characteristics is of great importance for the understanding and eventual improvement of their performances. This book reviews the latest techniques and procedures in the characterization and chemical modification of the silica surface, presenting a unified and state-of-the-art approach to the relevant analysis techniques and modification procedures, covering 1000 references integrated into one clear concept.
Author | : John O'Connor |
Publisher | : Springer Science & Business Media |
Total Pages | : 626 |
Release | : 2003-04-23 |
Genre | : Science |
ISBN | : 9783540413301 |
This guide to the use of surface analysis techniques, now in its second edition, has expanded to include more techniques, current applications and updated references. It outlines the application of surface analysis techniques to a broad range of studies in materials science and engineering. The book consists of three parts: an extensive introduction to the concepts of surface structure and composition, a techniques section describing 19 techniques and a section on applications. This book is aimed at industrial scientists and engineers in research and development. The level and content of this book make it ideal as a course text for senior undergraduate and postgraduate students in materials science, materials engineering, physics, chemistry and metallurgy.
Author | : Siegfried Hofmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 544 |
Release | : 2012-10-25 |
Genre | : Science |
ISBN | : 3642273807 |
To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.
Author | : John F. Watts |
Publisher | : John Wiley & Sons |
Total Pages | : 320 |
Release | : 2019-08-27 |
Genre | : Technology & Engineering |
ISBN | : 1119417643 |
Provides a concise yet comprehensive introduction to XPS and AES techniques in surface analysis This accessible second edition of the bestselling book, An Introduction to Surface Analysis by XPS and AES, 2nd Edition explores the basic principles and applications of X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) techniques. It starts with an examination of the basic concepts of electron spectroscopy and electron spectrometer design, followed by a qualitative and quantitative interpretation of the electron spectrum. Chapters examine recent innovations in instrument design and key applications in metallurgy, biomaterials, and electronics. Practical and concise, it includes compositional depth profiling; multi-technique analysis; and everything about samples—including their handling, preparation, stability, and more. Topics discussed in more depth include peak fitting, energy loss background analysis, multi-technique analysis, and multi-technique profiling. The book finishes with chapters on applications of electron spectroscopy in materials science and the comparison of XPS and AES with other analytical techniques. Extensively revised and updated with new material on NAPXPS, twin anode monochromators, gas cluster ion sources, valence band spectra, hydrogen detection, and quantification Explores key spectroscopic techniques in surface analysis Provides descriptions of latest instruments and techniques Includes a detailed glossary of key surface analysis terms Features an extensive bibliography of key references and additional reading Uses a non-theoretical style to appeal to industrial surface analysis sectors An Introduction to Surface Analysis by XPS and AES, 2nd Edition is an excellent introductory text for undergraduates, first-year postgraduates, and industrial users of XPS and AES.
Author | : H. Ibach |
Publisher | : Academic Press |
Total Pages | : 379 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 1483259455 |
Electron Energy Loss Spectroscopy and Surface Vibrations is devoted to electron energy loss spectroscopy as a probe of the crystal surface. Electrons with energy in the range of a few electron volts sample only a few atomic layers. As they approach or exit from the crystal, they interact with the vibrational modes of the crystal surface, or possibly with other elementary excitations localized there. The energy spectrum of electrons back-reflected from the surface is thus a rich source of information on its dynamics. The book opens with a detailed analysis of the physics that controls the operation of the monochromator, which is the core of the experimental apparatus. Separate chapters follow on the interaction of electrons with vibrational modes of the surface region and with other elementary excitations in the vicinity; the lattice dynamics of clean and adsorbate-covered surfaces, with emphasis on those features of particular relevance to surface vibrational spectroscopy; and selected applications vibration spectroscopy in surface physics and chemistry.
Author | : H. Ibach |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642810993 |
The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac tion is described in Chapter 4 with special emphasis on the use of electron diffrac tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".