Spectral Methods Using Multivariate Polynomials On The Unit Ball
Download Spectral Methods Using Multivariate Polynomials On The Unit Ball full books in PDF, epub, and Kindle. Read online free Spectral Methods Using Multivariate Polynomials On The Unit Ball ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kendall Atkinson |
Publisher | : CRC Press |
Total Pages | : 254 |
Release | : 2019-11-11 |
Genre | : Mathematics |
ISBN | : 1000725987 |
Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.
Author | : Kendall Atkinson |
Publisher | : CRC Press |
Total Pages | : 275 |
Release | : 2019-11-27 |
Genre | : Mathematics |
ISBN | : 1000725863 |
Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.
Author | : Josef Dick |
Publisher | : Springer |
Total Pages | : 1330 |
Release | : 2018-05-23 |
Genre | : Mathematics |
ISBN | : 3319724568 |
This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.
Author | : Michael Ruzhansky |
Publisher | : CRC Press |
Total Pages | : 366 |
Release | : 2020-02-07 |
Genre | : Mathematics |
ISBN | : 0429780575 |
The aim of Spectral Geometry of Partial Differential Operators is to provide a basic and self-contained introduction to the ideas underpinning spectral geometric inequalities arising in the theory of partial differential equations. Historically, one of the first inequalities of the spectral geometry was the minimization problem of the first eigenvalue of the Dirichlet Laplacian. Nowadays, this type of inequalities of spectral geometry have expanded to many other cases with number of applications in physics and other sciences. The main reason why the results are useful, beyond the intrinsic interest of geometric extremum problems, is that they produce a priori bounds for spectral invariants of (partial differential) operators on arbitrary domains. Features: Collects the ideas underpinning the inequalities of the spectral geometry, in both self-adjoint and non-self-adjoint operator theory, in a way accessible by anyone with a basic level of understanding of linear differential operators Aimed at theoretical as well as applied mathematicians, from a wide range of scientific fields, including acoustics, astronomy, MEMS, and other physical sciences Provides a step-by-step guide to the techniques of non-self-adjoint partial differential operators, and for the applications of such methods. Provides a self-contained coverage of the traditional and modern theories of linear partial differential operators, and does not require a previous background in operator theory.
Author | : Gennadi I. Mikhasev |
Publisher | : CRC Press |
Total Pages | : 367 |
Release | : 2020-04-21 |
Genre | : Business & Economics |
ISBN | : 1351630695 |
Localized Dynamics of Thin-Walled Shells focuses on localized vibrations and waves in thin-walled structures with variable geometrical and physical characteristics. It emphasizes novel asymptotic methods for solving boundary-value problems for dynamic equations in the shell theory, in the form of functions which are highly localized near both fixed and moving lines/points on the shell surface. Features First-of-its-kind work, synthesizing knowledge of the localization of vibrations and waves in thin-walled shells with a mathematical tool to study them Suitable for researchers working on the dynamics of thin shells and also as supplementary reading for undergraduates studying asymptotic methods Offers detailed analysis of wave processes in shells with varying geometric and physical parameters
Author | : Yoshihiro Sawano |
Publisher | : CRC Press |
Total Pages | : 427 |
Release | : 2020-09-16 |
Genre | : Mathematics |
ISBN | : 1000064077 |
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Author | : Martyn R. Dixon |
Publisher | : CRC Press |
Total Pages | : 329 |
Release | : 2020-04-03 |
Genre | : Mathematics |
ISBN | : 135100803X |
Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results
Author | : Frederik Caenepeel |
Publisher | : CRC Press |
Total Pages | : 331 |
Release | : 2019-11-05 |
Genre | : Mathematics |
ISBN | : 1000731308 |
Glider Representations offer several applications across different fields within Mathematics, thereby motivating the introduction of this new glider theory and opening numerous doors for future research, particularly with respect to more complex filtration chains. Features • Introduces new concepts in the Theory of Rings and Modules • Suitable for researchers and graduate students working in this area, and as supplementary reading for courses in Group Theory, Ring Theory, Lie Algebras and Sheaf Theory • The first book to explicitly outline this new approach to gliders and fragments and associated concepts
Author | : Willi Freeden |
Publisher | : CRC Press |
Total Pages | : 325 |
Release | : 2019-10-28 |
Genre | : Technology & Engineering |
ISBN | : 1000756521 |
Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.
Author | : Feyzi Başar |
Publisher | : CRC Press |
Total Pages | : 173 |
Release | : 2020-02-04 |
Genre | : Mathematics |
ISBN | : 1351166913 |
The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other. The book also discusses several geometric properties of summable spaces, as well as dealing with the construction of summable spaces using Orlicz functions, and explores several structural properties of such spaces. Each chapter contains a conclusion section highlighting the importance of results, and points the reader in the direction of possible new ideas for further study. Features Suitable for graduate schools, graduate students, researchers and faculty, and could be used as a key text for special Analysis seminars Investigates different types of summable spaces and computes their duals Characterizes several matrix classes transforming one summable space into other Discusses several geometric properties of summable spaces Examines several possible generalizations of Orlicz sequence spaces