Special Values of Automorphic Cohomology Classes

Special Values of Automorphic Cohomology Classes
Author: Mark Green
Publisher: American Mathematical Soc.
Total Pages: 158
Release: 2014-08-12
Genre: Mathematics
ISBN: 0821898574

The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains which occur as open -orbits in the flag varieties for and , regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces give rise to Penrose transforms between the cohomologies of distinct such orbits with coefficients in homogeneous line bundles.

Cohomology of Arithmetic Groups and Automorphic Forms

Cohomology of Arithmetic Groups and Automorphic Forms
Author: Jean-Pierre Labesse
Publisher: Springer
Total Pages: 358
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540468765

Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.

Period Functions for Maass Wave Forms and Cohomology

Period Functions for Maass Wave Forms and Cohomology
Author: R. Bruggeman
Publisher: American Mathematical Soc.
Total Pages: 150
Release: 2015-08-21
Genre: Mathematics
ISBN: 1470414074

The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups Γ⊂PSL2(R). In the case that Γ is the modular group PSL2(Z) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all Γ-invariant eigenfunctions of the Laplace operator. For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.

Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms

Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms
Author: Peter Stiller
Publisher: American Mathematical Soc.
Total Pages: 123
Release: 1984
Genre: Mathematics
ISBN: 0821823000

In this paper we explore a relationship that exists between the classical cusp form for subgroups of finite index in [italic]SL2([double-struck capital]Z) and certain differential equations, and we develop a connection between the equation's monodromy representation and the special values in the critical strip of the Dirichlet series associated to the cusp form.

Hodge Theory, Complex Geometry, and Representation Theory

Hodge Theory, Complex Geometry, and Representation Theory
Author: Robert S. Doran
Publisher: American Mathematical Soc.
Total Pages: 330
Release: 2014
Genre: Mathematics
ISBN: 0821894153

Contains carefully written expository and research articles. Expository papers include discussions of Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of SL2(R). Research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of Q-algebraic groups, and compactifications, distributions, and quotients of period domains.

Hodge Theory, Complex Geometry, and Representation Theory

Hodge Theory, Complex Geometry, and Representation Theory
Author: Mark Green
Publisher: American Mathematical Soc.
Total Pages: 314
Release: 2013-11-05
Genre: Mathematics
ISBN: 1470410125

This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.

A Homology Theory for Smale Spaces

A Homology Theory for Smale Spaces
Author: Ian F. Putnam
Publisher: American Mathematical Soc.
Total Pages: 136
Release: 2014-09-29
Genre: Mathematics
ISBN: 1470409097

The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.

Deformation Quantization for Actions of Kahlerian Lie Groups

Deformation Quantization for Actions of Kahlerian Lie Groups
Author: Pierre Bieliavsky
Publisher: American Mathematical Soc.
Total Pages: 166
Release: 2015-06-26
Genre: Mathematics
ISBN: 1470414910

Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.

Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Level One Algebraic Cusp Forms of Classical Groups of Small Rank
Author: Gaëtan Chenevier
Publisher: American Mathematical Soc.
Total Pages: 134
Release: 2015-08-21
Genre: Mathematics
ISBN: 147041094X

The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of GLn over Q of any given infinitesimal character, for essentially all n≤8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple Z-forms of the compact groups SO7, SO8, SO9 (and G2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of GLn with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.