Special Types Of Life Cycle Assessment
Download Special Types Of Life Cycle Assessment full books in PDF, epub, and Kindle. Read online free Special Types Of Life Cycle Assessment ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Matthias Finkbeiner |
Publisher | : Springer |
Total Pages | : 413 |
Release | : 2016-07-27 |
Genre | : Science |
ISBN | : 9401776105 |
This book presents specialised methods and tools built on classical LCA. In the first book-length overview, their importance for the further growth and application of LCA is demonstrated for some of the most prominent species of this emerging trend: Carbon footprinting; Water footprinting; Eco-efficiency assessment; Resource efficiency assessment; Input-output and hybrid LCA; Material flow analysis; Organizational LCA. Carbon footprinting was a huge driver for the market expansion of simplified LCA. The discussions led to an ample proliferation of different guidelines and standards including ISO/TS 14067 on Carbon Footprint of Product. Atsushi Inaba (Kogakuin University, Tokyo, Japan) and his eight co-authors provide an up-to-date status of Carbon Footprint of Products. The increasing relevance of Water Footprinting and the diverse methods were the drivers to develop the ISO 14046 as international water footprint standard. Markus Berger (Technische Universität Berlin, Germany), Stephan Pfister (ETH Zurich, Switzerland) and Masaharu Motoshita (Agency of Industrial Science and Technology, Tsukuba, Japan) present a status of water resources and demands from a global and regional perspective. A core part is the discussion and comparison of the different water footprint methods, databases and tools. Peter Saling from BASF SE in Ludwigshafen, Germany, broadens the perspective towards Eco-efficiency Assessment. He describes the BASF-specific type of eco-efficiency analysis plus adaptions like the so-called SEEBALANCE and AgBalance applications. Laura Schneider, Vanessa Bach and Matthias Finkbeiner (Technische Universität Berlin, Germany) address multi-dimensional LCA perspectives in the form of Resource Efficiency Assessment. Research needs and proposed methodological developments for abiotic resource efficiency assessment, and especially for the less developed area of biotic resources, are discussed.The fundamentals ofInput-output and Hybrid LCA are covered by Shinichiro Nakamura (Waseda University, Tokyo, Japan) and Keisuke Nansai (National Institute for Environmental Studies, Tsukuba, Japan). The concepts of environmentally extended IO, different types of hybrid IO-LCA and the waste model are introduced. David Laner and Helmut Rechberger (Vienna University of Technology, Austria) present the basic terms and procedures of Material Flow Analysismethodology. The combination of MFA and LCA is discussed as a promising approach for environmental decision support. Julia Martínez-Blanco (Technische Universität Berlin, Germany; now at Inèdit, Barcelona, Spain), Atsushi Inaba (Kogakuin University, Tokyo, Japan) and Matthias Finkbeiner (Technische Universität Berlin, Germany) introduce a recent development which could develop a new trend, namely the LCA of Organizations.
Author | : Subramanian Senthilkannan Muthu |
Publisher | : Springer Nature |
Total Pages | : 206 |
Release | : 2021-09-21 |
Genre | : Science |
ISBN | : 9811645620 |
Environmental Life Cycle Assessment (ELCA) that was developed about three decades ago demands a broadening of its scope to include lifecycle costing and social aspects of life cycle assessment as well, drawing on the three-pillar or ‘triple bottom line’ model of sustainability, which is the result of the development of the Life Cycle Sustainability Assessment (LCSA). LCSA refers to the evaluation of all environmental, social and economic negative impacts and benefits in decision-making processes towards more sustainable products throughout their life cycle. Combination of environmental and social life cycle assessments along with life cycle costing leads to life cycle sustainability assessment (LCSA). This book highlights various aspects of life cycle sustainability assessment (LCSA).
Author | : Guido Sonnemann |
Publisher | : Springer |
Total Pages | : 352 |
Release | : 2015-07-16 |
Genre | : Science |
ISBN | : 9401772215 |
This book provides insight into the Life Cycle Management (LCM) concept and the progress in its implementation. LCM is a management concept applied in industrial and service sectors to improve products and services, while enhancing the overall sustainability performance of business and its value chains. In this regard, LCM is an opportunity to differentiate through sustainability performance on the market place, working with all departments of a company such as research and development, procurement and marketing, and to enhance the collaboration with stakeholders along a company’s value chain. LCM is used beyond short-term business success and aims at long-term achievements by minimizing environmental and socio-economic burden, while maximizing economic and social value.
Author | : Olivier Jolliet |
Publisher | : CRC Press |
Total Pages | : 330 |
Release | : 2015-11-18 |
Genre | : Nature |
ISBN | : 1439887705 |
Environmental Life Cycle Assessment is a pivotal guide to identifying environmental problems and reducing related impacts for companies and organizations in need of life cycle assessment (LCA). LCA, a unique sustainability tool, provides a framework that addresses a growing demand for practical technological solutions. Detailing each phase of the LCA methodology, this textbook covers the historical development of LCA, presents the general principles and characteristics of LCA, and outlines the corresponding standards for good practice determined by the International Organization for Standardization. It also explains how to identify the critical aspects of an LCA, provides detailed examples of LCA analysis and applications, and includes illustrated problems and solutions with concrete examples from water management, electronics, packaging, automotive, and other industries. In addition, readers will learn how to: Use consistent criteria to realize and evaluate an LCA independently of individual interests Understand the LCA methodology and become familiar with existing databases and methods based on the latest results of international research Analyze and critique a completed LCA Apply LCA methodology to simple case studies Geared toward graduate and undergraduate students studying environmental science and industrial ecology, as well as practicing environmental engineers, and sustainability professionals who want to teach themselves LCA good practices, Environmental Life Cycle Assessment demonstrates how to conduct environmental assessments for products throughout their life cycles. It presents existing methods and recent developments in the growing field of LCA and systematically covers goal and system definition, life cycle inventory, life cycle impact assessment, and interpretation.
Author | : Subramanian Senthilkannan Muthu |
Publisher | : Woodhead Publishing |
Total Pages | : 401 |
Release | : 2015-07-25 |
Genre | : Technology & Engineering |
ISBN | : 0081001878 |
Life cycle assessment (LCA) is used to evaluate the environmental impacts of textile products, from raw material extraction, through fibre processing, textile manufacture, distribution and use, to disposal or recycling. LCA is an important tool for the research and development process, product and process design, and labelling of textiles and clothing. Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing systematically covers the LCA process with comprehensive examples and case studies. Part one of the book covers key indicators and processes in LCA, from carbon and ecological footprints to disposal, re-use and recycling. Part two then discusses a broad range of LCA applications in the textiles and clothing industry. - Covers the LCA process and its key indicators, including carbon and ecological footprints, disposal, re-use and recycling - Examines the key developments of LCA in the textile and clothing industries - Provides a wide range of case studies and examples of LCA applications in the textile and clothing industries
Author | : Kun-Mo Lee |
Publisher | : |
Total Pages | : 0 |
Release | : 2004 |
Genre | : Environmental impact analysis |
ISBN | : 9789810505905 |
Author | : Aiduan Borrion |
Publisher | : Royal Society of Chemistry |
Total Pages | : 316 |
Release | : 2021-03-19 |
Genre | : Science |
ISBN | : 1839161361 |
Life cycle assessment (LCA) is an established methodology used to quantify the environmental impacts of products, processes and services. Circular economy (CE) thinking is conceptual way of considering the impacts of consuming resources. By taking a closed loop approach, CE provides a framework for influencing behaviours and practices to minimise this impact. Development of the circular economy is a crucial component in the progression towards future sustainability. This book provides a robust systematic approach to the circular economy concept, using the established methodology of LCA. Including chapters on circular economic thinking, the use of LCA as a metric and linking LCA to the wider circular economy, this book utilises case studies to illustrate the approaches to LCA. With contributions from researchers worldwide, Life Cycle Assessment provides a practical, global guide for those who wish to use LCA as a research tool or to inform policy, process, and product improvement.
Author | : Andreas Ciroth |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2022-09-01 |
Genre | : Science |
ISBN | : 9783030622725 |
Life Cycle Inventory (LCI) Analysis is the second phase in the Life Cycle Assessment (LCA) framework. Since the first attempts to formalize life cycle assessment in the early 1970, life cycle inventory analysis has been a central part. Chapter 1 “Introduction to Life Cycle Inventory Analysis“ discusses the history of inventory analysis from the 1970s through SETAC and the ISO standard. In Chapter 2 “Principles of Life Cycle Inventory Modeling”, the general principles of setting up an LCI model and LCI analysis are described by introducing the core LCI model and extensions that allow addressing reality better. Chapter 3 “Development of Unit Process Datasets” shows that developing unit processes of high quality and transparency is not a trivial task, but is crucial for high-quality LCA studies. Chapter 4 “Multi-functionality in Life Cycle Inventory Analysis: Approaches and Solutions” describes how multi-functional processes can be identified. In Chapter 5 “Data Quality in Life Cycle Inventories”, the quality of data gathered and used in LCI analysis is discussed. State-of-the-art indicators to assess data quality in LCA are described and the fitness for purpose concept is introduced. Chapter 6 “Life Cycle Inventory Data and Databases“ follows up on the topic of LCI data and provides a state-of-the-art description of LCI databases. It describes differences between foreground and background data, recommendations for starting a database, data exchange and quality assurance concepts for databases, as well as the scientific basis of LCI databases. Chapter 7 “Algorithms of Life Cycle Inventory Analysis“ provides the mathematical models underpinning the LCI. Since Heijungs and Suh (2002), this is the first time that this aspect of LCA has been fundamentally presented. In Chapter 8 “Inventory Indicators in Life Cycle Assessment”, the use of LCI data to create aggregated environmental and resource indicators is described. Such indicators include the cumulative energy demand and various water use indicators. Chapter 9 “The Link Between Life Cycle Inventory Analysis and Life Cycle Impact Assessment” uses four examples to discuss the link between LCI analysis and LCIA. A clear and relevant link between these phases is crucial.
Author | : Michael Z. Hauschild |
Publisher | : Springer |
Total Pages | : 345 |
Release | : 2015-03-24 |
Genre | : Technology & Engineering |
ISBN | : 9401797447 |
This book offers a detailed presentation of the principles and practice of life cycle impact assessment. As a volume of the LCA compendium, the book is structured according to the LCIA framework developed by the International Organisation for Standardisation (ISO)passing through the phases of definition or selection of impact categories, category indicators and characterisation models (Classification): calculation of category indicator results (Characterisation); calculating the magnitude of category indicator results relative to reference information (Normalisation); and converting indicator results of different impact categories by using numerical factors based on value-choices (Weighting). Chapter one offers a historical overview of the development of life cycle impact assessment and presents the boundary conditions and the general principles and constraints of characterisation modelling in LCA. The second chapter outlines the considerations underlying the selection of impact categories and the classification or assignment of inventory flows into these categories. Chapters three through thirteen exploreall the impact categories that are commonly included in LCIA, discussing the characteristics of each followed by a review of midpoint and endpoint characterisation methods, metrics, uncertainties and new developments, and a discussion of research needs. Chapter-length treatment is accorded to Climate Change; Stratospheric Ozone Depletion; Human Toxicity; Particulate Matter Formation; Photochemical Ozone Formation; Ecotoxicity; Acidification; Eutrophication; Land Use; Water Use; and Abiotic Resource Use. The final two chapters map out the optional LCIA steps of Normalisation and Weighting.
Author | : Robert Crawford |
Publisher | : Routledge |
Total Pages | : 239 |
Release | : 2011-03-10 |
Genre | : Technology & Engineering |
ISBN | : 1135245088 |
Life cycle assessment enables the identification of a broad range of potential environmental impacts occurring across the entire life of a product, from its design through to its eventual disposal or reuse. The need for life cycle assessment to inform environmental design within the built environment is critical, due to the complex range of materials and processes required to construct and manage our buildings and infrastructure systems. After outlining the framework for life cycle assessment, this book uses a range of case studies to demonstrate the innovative input-output-based hybrid approach for compiling a life cycle inventory. This approach enables a comprehensive analysis of a broad range of resource requirements and environmental outputs so that the potential environmental impacts of a building or infrastructure system can be ascertained. These case studies cover a range of elements that are part of the built environment, including a residential building, a commercial office building and a wind turbine, as well as individual building components such as a residential-scale photovoltaic system. Comprehensively introducing and demonstrating the uses and benefits of life cycle assessment for built environment projects, this book will show you how to assess the environmental performance of your clients’ projects, to compare design options across their entire life and to identify opportunities for improving environmental performance.