Spatio Temporal Data Streams
Download Spatio Temporal Data Streams full books in PDF, epub, and Kindle. Read online free Spatio Temporal Data Streams ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Zdravko Galić |
Publisher | : Springer |
Total Pages | : 116 |
Release | : 2016-08-26 |
Genre | : Computers |
ISBN | : 1493965751 |
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.
Author | : Hsu, Wynne |
Publisher | : IGI Global |
Total Pages | : 292 |
Release | : 2007-07-31 |
Genre | : Computers |
ISBN | : 1599043890 |
"This book presents probable solutions when discovering the spatial sequence patterns by incorporating the information into the sequence of patterns, and introduces new classes of spatial sequence patterns, called flow and generalized spatio-temporal patterns, addressing different scenarios in spatio-temporal data by modeling them as graphs, providing a comprehensive synopsis on two successful partition-based algorithms designed by the authors"--Provided by publisher.
Author | : Gidon Eshel |
Publisher | : Princeton University Press |
Total Pages | : 337 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 069112891X |
How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China.
Author | : Christopher K. Wikle |
Publisher | : CRC Press |
Total Pages | : 397 |
Release | : 2019-02-18 |
Genre | : Mathematics |
ISBN | : 0429649789 |
The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.
Author | : Michael Gertz |
Publisher | : Springer |
Total Pages | : 454 |
Release | : 2017-08-07 |
Genre | : Computers |
ISBN | : 3319643673 |
This book constitutes the refereed proceedings of the 15th International Symposium on Spatial and Temporal Databases, SSTD 2017, held in Arlington, VA, USA, in August 2017.The 19 full papers presented together with 8 demo papers and 5 vision papers were carefully reviewed and selected from 90 submissions. The papers are organized around the current research on concepts, tools, and techniques related to spatial and temporal databases.
Author | : Gerald Corzo |
Publisher | : Elsevier |
Total Pages | : 194 |
Release | : 2018-11-20 |
Genre | : Science |
ISBN | : 0128117311 |
Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations
Author | : Frederica Darema |
Publisher | : Springer Nature |
Total Pages | : 937 |
Release | : 2023-10-16 |
Genre | : Computers |
ISBN | : 3031279867 |
This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).
Author | : Mark R.T. Dale |
Publisher | : Cambridge University Press |
Total Pages | : 355 |
Release | : 2017-11-09 |
Genre | : Mathematics |
ISBN | : 110708931X |
This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.
Author | : R. Uday Kiran |
Publisher | : Springer Nature |
Total Pages | : 263 |
Release | : 2021-10-29 |
Genre | : Computers |
ISBN | : 9811639647 |
This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed. The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques. The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.
Author | : Theophano Mitsa |
Publisher | : CRC Press |
Total Pages | : 398 |
Release | : 2010-03-10 |
Genre | : Business & Economics |
ISBN | : 1420089773 |
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.