Sparse Solutions of Underdetermined Linear Systems and Their Applications

Sparse Solutions of Underdetermined Linear Systems and Their Applications
Author: Ming-Jun Lai
Publisher: SIAM
Total Pages:
Release: 2021-06-25
Genre: Mathematics
ISBN: 1611976510

This textbook presents a special solution to underdetermined linear systems where the number of nonzero entries in the solution is very small compared to the total number of entries. This is called a sparse solution. Since underdetermined linear systems can be very different, the authors explain how to compute a sparse solution using many approaches. Sparse Solutions of Underdetermined Linear Systems and Their Applications contains 64 algorithms for finding sparse solutions of underdetermined linear systems and their applications for matrix completion, graph clustering, and phase retrieval and provides a detailed explanation of these algorithms including derivations and convergence analysis. Exercises for each chapter help readers understand the material. This textbook is appropriate for graduate students in math and applied math, computer science, statistics, data science, and engineering. Advisors and postdoctoral scholars will also find the book interesting and useful.

Sparse Optimization Theory and Methods

Sparse Optimization Theory and Methods
Author: Yun-Bin Zhao
Publisher: CRC Press
Total Pages: 222
Release: 2018-07-04
Genre: Business & Economics
ISBN: 1351624148

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author’s latest research in the field that have not appeared in other books.

A Survey of Blur Detection and Sharpness Assessment Methods

A Survey of Blur Detection and Sharpness Assessment Methods
Author: Juan Andrade
Publisher: Springer Nature
Total Pages: 95
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031015290

Blurring is almost an omnipresent effect on natural images. The main causes of blurring in images include: (a) the existence of objects at different depths within the scene which is known as defocus blur; (b) blurring due to motion either of objects in the scene or the imaging device; and (c) blurring due to atmospheric turbulence. Automatic estimation of spatially varying sharpness/blurriness has several applications including depth estimation, image quality assessment, information retrieval, image restoration, among others. There are some cases in which blur is intentionally introduced or enhanced; for example, in artistic photography and cinematography in which blur is intentionally introduced to emphasize a certain image region. Bokeh is a technique that introduces defocus blur with aesthetic purposes. Additionally, in trending applications like augmented and virtual reality usually, blur is introduced in order to provide/enhance depth perception. Digital images and videos are produced every day in astonishing amounts and the demand for higher quality is constantly rising which creates a need for advanced image quality assessment. Additionally, image quality assessment is important for the performance of image processing algorithms. It has been determined that image noise and artifacts can affect the performance of algorithms such as face detection and recognition, image saliency detection, and video target tracking. Therefore, image quality assessment (IQA) has been a topic of intense research in the fields of image processing and computer vision. Since humans are the end consumers of multimedia signals, subjective quality metrics provide the most reliable results; however, their cost in addition to time requirements makes them unfeasible for practical applications. Thus, objective quality metrics are usually preferred.

Feature Learning and Understanding

Feature Learning and Understanding
Author: Haitao Zhao
Publisher: Springer Nature
Total Pages: 299
Release: 2020-04-03
Genre: Science
ISBN: 3030407942

This book covers the essential concepts and strategies within traditional and cutting-edge feature learning methods thru both theoretical analysis and case studies. Good features give good models and it is usually not classifiers but features that determine the effectiveness of a model. In this book, readers can find not only traditional feature learning methods, such as principal component analysis, linear discriminant analysis, and geometrical-structure-based methods, but also advanced feature learning methods, such as sparse learning, low-rank decomposition, tensor-based feature extraction, and deep-learning-based feature learning. Each feature learning method has its own dedicated chapter that explains how it is theoretically derived and shows how it is implemented for real-world applications. Detailed illustrated figures are included for better understanding. This book can be used by students, researchers, and engineers looking for a reference guide for popular methods of feature learning and machine intelligence.

Big Data over Networks

Big Data over Networks
Author: Shuguang Cui
Publisher: Cambridge University Press
Total Pages: 459
Release: 2016-01-14
Genre: Technology & Engineering
ISBN: 1316445275

Utilising both key mathematical tools and state-of-the-art research results, this text explores the principles underpinning large-scale information processing over networks and examines the crucial interaction between big data and its associated communication, social and biological networks. Written by experts in the diverse fields of machine learning, optimisation, statistics, signal processing, networking, communications, sociology and biology, this book employs two complementary approaches: first analysing how the underlying network constrains the upper-layer of collaborative big data processing, and second, examining how big data processing may boost performance in various networks. Unifying the broad scope of the book is the rigorous mathematical treatment of the subjects, which is enriched by in-depth discussion of future directions and numerous open-ended problems that conclude each chapter. Readers will be able to master the fundamental principles for dealing with big data over large systems, making it essential reading for graduate students, scientific researchers and industry practitioners alike.

Compressed Sensing & Sparse Filtering

Compressed Sensing & Sparse Filtering
Author: Avishy Y. Carmi
Publisher: Springer Science & Business Media
Total Pages: 505
Release: 2013-09-13
Genre: Technology & Engineering
ISBN: 364238398X

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems. This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.

Proceedings of the Fifteenth International Conference on Management Science and Engineering Management

Proceedings of the Fifteenth International Conference on Management Science and Engineering Management
Author: Jiuping Xu
Publisher: Springer Nature
Total Pages: 869
Release: 2021-07-15
Genre: Technology & Engineering
ISBN: 303079203X

This book gathers the proceedings of the fifteenth International Conference on Management Science and Engineering Management (ICMSEM 2021) held on August 1-4, 2021, at the University of Castilla-La Mancha (UCLM), Toledo, Spain. The proceedings contains theoretical and practical research of decision support systems, complex systems, empirical studies, sustainable development, project management, and operation optimization, showing advanced management concepts and demonstrates substantial interdisciplinary developments in MSEM methods and practical applications. It allows researchers and practitioners in management science and engineering management (MSEM) to share their latest insights and contribution. Meanwhile, it appeals to readers interested in these areas, especially those looking for new ideas and research directions.

Proceedings of the International Conference on Data Engineering and Communication Technology

Proceedings of the International Conference on Data Engineering and Communication Technology
Author: Suresh Chandra Satapathy
Publisher: Springer
Total Pages: 805
Release: 2016-08-24
Genre: Technology & Engineering
ISBN: 981101678X

This two-volume book contains research work presented at the First International Conference on Data Engineering and Communication Technology (ICDECT) held during March 10–11, 2016 at Lavasa, Pune, Maharashtra, India. The book discusses recent research technologies and applications in the field of Computer Science, Electrical and Electronics Engineering. The aim of the Proceedings is to provide cutting-edge developments taking place in the field data engineering and communication technologies which will assist the researchers and practitioners from both academia as well as industry to advance their field of study.

Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms

Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms
Author: Bhabesh Deka
Publisher: Springer
Total Pages: 133
Release: 2018-12-29
Genre: Technology & Engineering
ISBN: 9811335974

This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.

Intelligent Computing and Optimization

Intelligent Computing and Optimization
Author: Pandian Vasant
Publisher: Springer Nature
Total Pages: 364
Release: 2023-12-12
Genre: Technology & Engineering
ISBN: 3031362462

This book of Springer Nature is another proof of Springer’s outstanding greatness on the lively interface of Holistic Computational Optimization, Green IoTs, Smart Modeling, and Deep Learning! It is a masterpiece of what our community of academics and experts can provide when an interconnected approach of joint, mutual, and meta-learning is supported by advanced operational research and experience of the World-Leader Springer Nature! The 6th edition of International Conference on Intelligent Computing and Optimization took place at G Hua Hin Resort & Mall on April 27–28, 2023, with tremendous support from the global research scholars across the planet. Objective is to celebrate “Research Novelty with Compassion and Wisdom” with researchers, scholars, experts, and investigators in Intelligent Computing and Optimization across the globe, to share knowledge, experience, and innovation—a marvelous opportunity for discourse and mutuality by novel research, invention, and creativity. This proceedings book of the 6th ICO’2023 is published by Springer Nature—Quality Label of Enlightenment.