Sparse representation of visual data for compression and compressed sensing

Sparse representation of visual data for compression and compressed sensing
Author: Ehsan Miandji
Publisher: Linköping University Electronic Press
Total Pages: 180
Release: 2018-11-23
Genre:
ISBN: 9176851869

The ongoing advances in computational photography have introduced a range of new imaging techniques for capturing multidimensional visual data such as light fields, BRDFs, BTFs, and more. A key challenge inherent to such imaging techniques is the large amount of high dimensional visual data that is produced, often requiring GBs, or even TBs, of storage. Moreover, the utilization of these datasets in real time applications poses many difficulties due to the large memory footprint. Furthermore, the acquisition of large-scale visual data is very challenging and expensive in most cases. This thesis makes several contributions with regards to acquisition, compression, and real time rendering of high dimensional visual data in computer graphics and imaging applications. Contributions of this thesis reside on the strong foundation of sparse representations. Numerous applications are presented that utilize sparse representations for compression and compressed sensing of visual data. Specifically, we present a single sensor light field camera design, a compressive rendering method, a real time precomputed photorealistic rendering technique, light field (video) compression and real time rendering, compressive BRDF capture, and more. Another key contribution of this thesis is a general framework for compression and compressed sensing of visual data, regardless of the dimensionality. As a result, any type of discrete visual data with arbitrary dimensionality can be captured, compressed, and rendered in real time. This thesis makes two theoretical contributions. In particular, uniqueness conditions for recovering a sparse signal under an ensemble of multidimensional dictionaries is presented. The theoretical results discussed here are useful for designing efficient capturing devices for multidimensional visual data. Moreover, we derive the probability of successful recovery of a noisy sparse signal using OMP, one of the most widely used algorithms for solving compressed sensing problems.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing
Author: Simon Foucart
Publisher: Springer Science & Business Media
Total Pages: 634
Release: 2013-08-13
Genre: Computers
ISBN: 0817649484

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing
Author: Julien Mairal
Publisher: Now Publishers
Total Pages: 216
Release: 2014-12-19
Genre: Computers
ISBN: 9781680830088

Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Compressive Sensing in Healthcare

Compressive Sensing in Healthcare
Author: Mahdi Khosravy
Publisher: Academic Press
Total Pages: 308
Release: 2020-05-18
Genre: Technology & Engineering
ISBN: 0128212489

Compressive Sensing in Healthcare, part of the Advances in Ubiquitous Sensing Applications for Healthcare series gives a review on compressive sensing techniques in a practical way, also presenting deterministic compressive sensing techniques that can be used in the field. The focus of the book is on healthcare applications for this technology. It is intended for both the creators of this technology and the end users of these products. The content includes the use of EEG and ECG, plus hardware and software requirements for building projects. Body area networks and body sensor networks are explored. Provides a toolbox for compressive sensing in health, presenting both mathematical and coding information Presents an intuitive introduction to compressive sensing, including MATLAB tutorials Covers applications of compressive sensing in health care

Sparse and Redundant Representations

Sparse and Redundant Representations
Author: Michael Elad
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2010-08-12
Genre: Mathematics
ISBN: 1441970118

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

A Wavelet Tour of Signal Processing

A Wavelet Tour of Signal Processing
Author: Stephane Mallat
Publisher: Elsevier
Total Pages: 663
Release: 1999-09-14
Genre: Computers
ISBN: 0080520839

This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics

Handbook of Big Data Analytics

Handbook of Big Data Analytics
Author: Wolfgang Karl Härdle
Publisher: Springer
Total Pages: 532
Release: 2018-07-20
Genre: Computers
ISBN: 3319182846

Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.

Multimedia Signals and Systems

Multimedia Signals and Systems
Author: Srdjan Stanković
Publisher: Springer Science & Business Media
Total Pages: 373
Release: 2012-09-06
Genre: Computers
ISBN: 1461442087

Multimedia signals include different data types (text, sound, graphics, picture, animations, video, etc.), which can be time-dependent (sound, video and animation) or spatially-dependent (images, text and graphics). Hence, the multimedia systems represent an interdisciplinary cross-section of the following areas: digital signal processing, computer architecture, computer networks and telecommunications. Multimedia Signals and Systems is an introductory text, designed for students or professionals and researchers in other fields, with a need to learn the basics of signals and systems. A considerable emphasis is placed on the analysis and processing of multimedia signals (audio, images, video). Additionally, the book connects these principles to other important elements of multimedia systems such as the analysis of optical media, computer networks, QoS, and digital watermarking.

Engineering Mathematics and Artificial Intelligence

Engineering Mathematics and Artificial Intelligence
Author: Herb Kunze
Publisher: CRC Press
Total Pages: 717
Release: 2023-07-26
Genre: Technology & Engineering
ISBN: 1000907899

The fields of Artificial Intelligence (AI) and Machine Learning (ML) have grown dramatically in recent years, with an increasingly impressive spectrum of successful applications. This book represents a key reference for anybody interested in the intersection between mathematics and AI/ML and provides an overview of the current research streams. Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications discusses the theory behind ML and shows how mathematics can be used in AI. The book illustrates how to improve existing algorithms by using advanced mathematics and offers cutting-edge AI technologies. The book goes on to discuss how ML can support mathematical modeling and how to simulate data by using artificial neural networks. Future integration between ML and complex mathematical techniques is also highlighted within the book. This book is written for researchers, practitioners, engineers, and AI consultants.