Stochastic Processes in Astrophysics
Author | : J. Robert Buchler |
Publisher | : |
Total Pages | : 224 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : |
Download Some Stochastic Processes In Astrophysics full books in PDF, epub, and Kindle. Read online free Some Stochastic Processes In Astrophysics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J. Robert Buchler |
Publisher | : |
Total Pages | : 224 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : |
Author | : Don S. Lemons |
Publisher | : Johns Hopkins University Press+ORM |
Total Pages | : 165 |
Release | : 2003-04-29 |
Genre | : Science |
ISBN | : 0801876389 |
This “lucid, masterfully written introduction to an often difficult subject . . . belongs on the bookshelf of every student of statistical physics” (Dr. Brian J. Albright, Applied Physics Division, Los Alamos National Laboratory). This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. With an emphasis on applications, it includes end-of-chapter problems. Physicist and author Don S. Lemons builds on Paul Langevin’s seminal 1908 paper “On the Theory of Brownian Motion” and its explanations of classical uncertainty in natural phenomena. Following Langevin’s example, Lemons applies Newton’s second law to a “Brownian particle on which the total force included a random component.” This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. This volume contains the complete text of Paul Langevin’s “On the Theory of Brownian Motion,” translated by Anthony Gythiel.
Author | : N.G. Van Kampen |
Publisher | : Elsevier |
Total Pages | : 482 |
Release | : 1992-11-20 |
Genre | : Science |
ISBN | : 0080571387 |
This new edition of Van Kampen's standard work has been completely revised and updated. Three major changes have also been made. The Langevin equation receives more attention in a separate chapter in which non-Gaussian and colored noise are introduced. Another additional chapter contains old and new material on first-passage times and related subjects which lay the foundation for the chapter on unstable systems. Finally a completely new chapter has been written on the quantum mechanical foundations of noise. The references have also been expanded and updated.
Author | : Myron W. Evans |
Publisher | : John Wiley & Sons |
Total Pages | : 574 |
Release | : 2009-09-08 |
Genre | : Science |
ISBN | : 0470143312 |
An international group of scholars presents a very important development in the theory of relaxation processes. For the first time, the basic equations of motion have been put into a form suitable for computation of a variety of observable phenomena in several different disciplines. This book begins with a description of the foundations of the memory function techniques, of the adiabatic elimination procedure and of the mathematics of continued fractions. It also covers depth relaxation phenomena in several areas of physics, chemistry, biology, electronic engineering, spectroscopy, computer simulation and astronomy.
Author | : Jan A. Freund |
Publisher | : Springer |
Total Pages | : 512 |
Release | : 2008-01-11 |
Genre | : Science |
ISBN | : 3540453962 |
The theory of stochastic processes originally grew out of efforts to describe Brownian motion quantitatively. Today it provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. The credit for acquiring all the deep insights and powerful methods is due ma- ly to a handful of physicists and mathematicians: Einstein, Smoluchowski, Langevin, Wiener, Stratonovich, etc. Hence it is no surprise that until - cently the bulk of basic and applied stochastic research was devoted to purely mathematical and physical questions. However, in the last decade we have witnessed an enormous growth of results achieved in other sciences - especially chemistry and biology - based on applying methods of stochastic processes. One reason for this stochastics boom may be that the realization that noise plays a constructive rather than the expected deteriorating role has spread to communities beyond physics. Besides their aesthetic appeal these noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for so far open pr- lems (information transmission in the nervous system and information p- cessing in the brain, processes at the cell level, enzymatic reactions, etc.). They may also pave the way to novel technological applications (noise-- hanced reaction rates, noise-induced transport and separation on the na- scale, etc.). Key words to be mentioned in this context are stochastic r- onance, Brownian motors or ratchets, and noise-supported phenomena in excitable systems.
Author | : Kurt Jacobs |
Publisher | : Cambridge University Press |
Total Pages | : 203 |
Release | : 2010-02-18 |
Genre | : Science |
ISBN | : 1139486799 |
Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.
Author | : Cosimo Bambi |
Publisher | : Springer Nature |
Total Pages | : 5912 |
Release | : |
Genre | : |
ISBN | : 9811969604 |
Author | : G. Belvedere |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9400924011 |
Proceeding of the European Physical Society Study Conference, held in Noto (Sicily), Italy, June 16-20, 1988
Author | : M. Reza Rahimi Tabar |
Publisher | : Springer |
Total Pages | : 290 |
Release | : 2019-07-04 |
Genre | : Science |
ISBN | : 3030184722 |
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.