Some Basic Problems Of The Mathematical Theory Of Elasticity
Download Some Basic Problems Of The Mathematical Theory Of Elasticity full books in PDF, epub, and Kindle. Read online free Some Basic Problems Of The Mathematical Theory Of Elasticity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : N.I. Muskhelishvili |
Publisher | : Springer Science & Business Media |
Total Pages | : 746 |
Release | : 2013-11-11 |
Genre | : Technology & Engineering |
ISBN | : 9401730342 |
TO THE FIRST ENGLISH EDITION. In preparing this translation, I have taken the liberty of including footnotes in the main text or inserting them in small type at the appropriate places. I have also corrected minor misprints without special mention .. The Chapters and Sections of the original text have been called Parts and Chapters respectively, where the latter have been numbered consecutively. The subject index was not contained in the Russian original and the authors' index represents an extension of the original list of references. In this way the reader should be able to find quickly the pages on which anyone reference is discussed. The transliteration problem has been overcome by printing the names of Russian authors and journals also in Russian type. While preparing this translation in the first place for my own informa tion, the knowledge that it would also become accessible to a large circle of readers has made the effort doubly worthwhile. I feel sure that the reader will share with me in my admiration for the simplicity and lucidity of presentation.
Author | : N.I. Muskhelishvili |
Publisher | : Springer Science & Business Media |
Total Pages | : 774 |
Release | : 1977-04-30 |
Genre | : Technology & Engineering |
ISBN | : 9789001607012 |
TO THE FIRST ENGLISH EDITION. In preparing this translation, I have taken the liberty of including footnotes in the main text or inserting them in small type at the appropriate places. I have also corrected minor misprints without special mention .. The Chapters and Sections of the original text have been called Parts and Chapters respectively, where the latter have been numbered consecutively. The subject index was not contained in the Russian original and the authors' index represents an extension of the original list of references. In this way the reader should be able to find quickly the pages on which anyone reference is discussed. The transliteration problem has been overcome by printing the names of Russian authors and journals also in Russian type. While preparing this translation in the first place for my own informa tion, the knowledge that it would also become accessible to a large circle of readers has made the effort doubly worthwhile. I feel sure that the reader will share with me in my admiration for the simplicity and lucidity of presentation.
Author | : Nikolaj I. Muschelišvili |
Publisher | : |
Total Pages | : 718 |
Release | : 1963 |
Genre | : |
ISBN | : |
Author | : Giuseppe Grioli |
Publisher | : Springer Science & Business Media |
Total Pages | : 177 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642874320 |
It is not my intention to present a treatise of elasticity in the follow ing pages. The size of the volume would not permit it, and, on the other hand, there are already excellent treatises. Instead, my aim is to develop some subjects not considered in the best known treatises of elasticity but nevertheless basic, either from the physical or the analytical point of view, if one is to establish a complete theory of elasticity. The material presented here is taken from original papers, generally very recent, and concerning, often, open questions still being studied by mathematicians. Most of the problems are from the theory of finite deformations [non-linear theory], but a part of this book concerns the theory of small deformations [linear theory], partly for its interest in many practical questions and partly because the analytical study of the theory of finite strain may be based on the infinitesimal one.
Author | : Augustus Edward Hough Love |
Publisher | : |
Total Pages | : 674 |
Release | : 1927 |
Genre | : Elasticity |
ISBN | : |
Author | : O.A. Oleinik |
Publisher | : Elsevier |
Total Pages | : 413 |
Release | : 1992-11-02 |
Genre | : Mathematics |
ISBN | : 0080875475 |
This monograph is based on research undertaken by the authors during the last ten years. The main part of the work deals with homogenization problems in elasticity as well as some mathematical problems related to composite and perforated elastic materials. This study of processes in strongly non-homogeneous media brings forth a large number of purely mathematical problems which are very important for applications. Although the methods suggested deal with stationary problems, some of them can be extended to non-stationary equations. With the exception of some well-known facts from functional analysis and the theory of partial differential equations, all results in this book are given detailed mathematical proof. It is expected that the results and methods presented in this book will promote further investigation of mathematical models for processes in composite and perforated media, heat-transfer, energy transfer by radiation, processes of diffusion and filtration in porous media, and that they will stimulate research in other problems of mathematical physics and the theory of partial differential equations.
Author | : Kang Feng |
Publisher | : Springer Science & Business Media |
Total Pages | : 407 |
Release | : 2013-04-17 |
Genre | : Science |
ISBN | : 3662032864 |
Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics.
Author | : Stuart Antman |
Publisher | : Springer Science & Business Media |
Total Pages | : 762 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475741472 |
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Author | : Martin H. Sadd |
Publisher | : Elsevier |
Total Pages | : 474 |
Release | : 2010-08-04 |
Genre | : Technology & Engineering |
ISBN | : 008047747X |
Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of
Author | : N. I. Muskhelishvili |
Publisher | : Courier Corporation |
Total Pages | : 466 |
Release | : 2013-02-19 |
Genre | : Mathematics |
ISBN | : 0486145069 |
DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div