Some Applications Of Stochastic Processes To The Theory Of Optimal Estimation And Control
Download Some Applications Of Stochastic Processes To The Theory Of Optimal Estimation And Control full books in PDF, epub, and Kindle. Read online free Some Applications Of Stochastic Processes To The Theory Of Optimal Estimation And Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jason L. Speyer |
Publisher | : SIAM |
Total Pages | : 391 |
Release | : 2008-11-06 |
Genre | : Mathematics |
ISBN | : 0898716551 |
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.
Author | : Frank L. Lewis |
Publisher | : CRC Press |
Total Pages | : 546 |
Release | : 2017-12-19 |
Genre | : Technology & Engineering |
ISBN | : 1420008293 |
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Author | : Peter S. Maybeck |
Publisher | : Academic Press |
Total Pages | : 311 |
Release | : 1982-08-25 |
Genre | : Mathematics |
ISBN | : 0080960030 |
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Author | : George N. Saridis |
Publisher | : Wiley-Interscience |
Total Pages | : 256 |
Release | : 1995-04-03 |
Genre | : Mathematics |
ISBN | : |
In this, the first introductory book on stochastic processes in twenty years, leading theoretician George Saridis provides a modern innovative approach that applies the most recent advances in probabilistic processes to such areas as communications and robotics technology. Stochastic Processes, Estimation, and Control: The Entropy Approach is designed as a text for graduate courses in dynamic programming and stochastic control, stochastic processes, or applied probability in the engineering or mathematical/computational science departments, and as a guide for the practicing engineer and researcher it offers a lucid discussion of parameter estimation based on least square techniques, an in-depth investigation of the estimation of the states of a stochastic linear and nonlinear dynamic system, and a modified derivation of the linear-quadratic Gaussian optimal control problem. Professor Saridis's presentation of estimation and control theory is thorough, but avoids the use of advanced mathematics. A new theory of approximation of the optimal solution for nonlinear stochastic systems is presented as a general engineering tool, and the whole area of stochastic processes, estimation, and control is recast using entropy as a measure.
Author | : John L. Crassidis |
Publisher | : CRC Press |
Total Pages | : 606 |
Release | : 2004-04-27 |
Genre | : Mathematics |
ISBN | : 1135439273 |
Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals received are used to determine highly sensitive processes such as the flight path of a plane, the orbit of a space vehicle, or the control of a machine. The authors use dynamic models from mechanical and aerospace engineering to provide immediate results of estimation concepts with a minimal reliance on mathematical skills. The book documents the development of the central concepts and methods of optimal estimation theory in a manner accessible to engineering students, applied mathematicians, and practicing engineers. It includes rigorous theoretial derivations and a significant amount of qualitiative discussion and judgements. It also presents prototype algorithms, giving detail and discussion to stimulate development of efficient computer programs and intelligent use of them. This book illustrates the application of optimal estimation methods to problems with varying degrees of analytical and numercial difficulty. It compares various approaches to help develop a feel for the absolute and relative utility of different methods, and provides many applications in the fields of aerospace, mechanical, and electrical engineering.
Author | : Alexey B. Piunovskiy |
Publisher | : Luniver Press |
Total Pages | : 342 |
Release | : 2010-09 |
Genre | : Mathematics |
ISBN | : 1905986300 |
World leading experts give their accounts of the modern mathematical models in the field: Markov Decision Processes, controlled diffusions, piece-wise deterministic processes etc, with a wide range of performance functionals. One of the aims is to give a general view on the state-of-the-art. The authors use Dynamic Programming, Convex Analytic Approach, several numerical methods, index-based approach and so on. Most chapters either contain well developed examples, or are entirely devoted to the application of the mathematical control theory to real life problems from such fields as Insurance, Portfolio Optimization and Information Transmission. The book will enable researchers, academics and research students to get a sense of novel results, concepts, models, methods, and applications of controlled stochastic processes.
Author | : The Analytic Sciences Corporation |
Publisher | : MIT Press |
Total Pages | : 388 |
Release | : 1974-05-15 |
Genre | : Computers |
ISBN | : 9780262570480 |
This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systems. Arthur Gelb writes in the Foreword that "It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance." Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with "built-in" answers at the end of each of the nine chapters further enhances the self-study potential of the text. After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations. This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work.
Author | : Wendell H. Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461263808 |
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Author | : N.K. Sinha |
Publisher | : Elsevier |
Total Pages | : 533 |
Release | : 2014-05-23 |
Genre | : Technology & Engineering |
ISBN | : 1483298078 |
Stochastic control, the control of random processes, has become increasingly more important to the systems analyst and engineer. The Second IFAC Symposium on Stochastic Control represents current thinking on all aspects of stochastic control, both theoretical and practical, and as such represents a further advance in the understanding of such systems.
Author | : P. R. Kumar |
Publisher | : SIAM |
Total Pages | : 371 |
Release | : 2015-12-15 |
Genre | : Mathematics |
ISBN | : 1611974259 |
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.