Solvation Thermodynamics

Solvation Thermodynamics
Author: Arieh Y. Ben-Naim
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2013-03-09
Genre: Science
ISBN: 1475765509

This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 based on analysis at the molecular level. During the past ten years, I have introduced several new quantities which, in my opinion, should replace the conventional measures of solvation thermodynamics. To avoid confusing the new quantities with those referred to conventionally in the literature as standard quantities of solvation, I called these "nonconventional," "generalized," and "local" standard quantities and attempted to point out the advantages of these new quantities over the conventional ones.

Thermodynamics of Solvation

Thermodynamics of Solvation
Author: Gennadiĭ Alekseevich Krestov
Publisher: Prentice Hall
Total Pages: 284
Release: 1991
Genre: Science
ISBN: 9780139150425

Aimed at scientists interested in the structure and dynamics of aqueous electrolyte solutions, this work examines the concept of the chemical nature of solutions. It shows quantitatively in tabulations of thermodynamic data for metal ions and anions the role of solvents as chemical reagents.

Molecular Theory of Solvation

Molecular Theory of Solvation
Author: F. Hirata
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 2006-04-11
Genre: Science
ISBN: 1402025904

Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.

Single-Ion Solvation

Single-Ion Solvation
Author: Philippe Hunenberger
Publisher: Royal Society of Chemistry
Total Pages: 614
Release: 2015-10-20
Genre: Science
ISBN: 1782624961

Ions are ubiquitous in chemical, technological, ecological and biological processes. Characterizing their role in these processes in the first place requires the evaluation of the thermodynamic parameters associated with the solvation of a given ion. However, due to the constraint of electroneutrality, the involvement of surface effects and the ambiguous connection between microscopic and macroscopic descriptions, the determination of single-ion solvation properties via both experimental and theoretical approaches has turned out to be a very difficult and highly controversial problem. This unique book provides an up-to-date, compact and consistent account of the research field of single-ion solvation thermodynamics that has over one hundred years of history and still remains largely unsolved. By reviewing the various approaches employed to date, establishing the relevant connections between single-ion thermodynamics and electrochemistry, resolving conceptual ambiguities, and giving an exhaustive data compilation (in the context of alkali and halide hydration), this book provides a consistent synthesis, in depth understanding and clarification of a large and sometimes very confusing research field. The book is primarily aimed at researchers (professors, postgraduates, graduates, and industrial researchers) concerned with processes involving ionic solvation properties (these are ubiquitous, eg. in physical/organic/analytical chemistry, electrochemistry, biochemistry, pharmacology, geology, and ecology). Because of the concept definitions and data compilations it contains, it is also a useful reference book to have in a university library. Finally, it may be of general interest to anyone wanting to learn more about ions and solvation. Key features: - discusses both experimental and theoretical approaches, and establishes the connection between them - provides both an account of the past research (covering over one hundred years) and a discussion of current directions (in particular on the theoretical side) - involves a comprehensive reference list of over 2000 citations - employs a very consistent notation (including table of symbols and unambiguous definitions of all introduced quantities) - provides a discussion and clarification of ambiguous concepts (ie. concepts that have not been defined clearly, or have been defined differently by different authors, leading to confusion in past literature) - encompasses an exhaustive data compilation (in the restricted context of alkali and halide hydration), along with recommended values (after critical analysis of this literature data) - is illustrated by a number of synoptic colour figures, that will help the reader to grasp the connections between different concepts in one single picture

Ion Solvation

Ion Solvation
Author: Y. Marcus
Publisher: John Wiley & Sons
Total Pages: 328
Release: 1985
Genre: Science
ISBN:

Chemical reactions generally take place in solution and often involve ions. The behaviour of ions in solution, manifested through ion solvation, is therefore of prime interest in chemistry. This book considers in depth the phenomenology of ion solvation and the models and interpretations that have been proposed as the physical causes for the observed phenomena. It contains a thorough discussion of the statistical thermodynamic background of the solvation process from which a discussion of the actual thermodynamics is developed. This, in turn, serves as a background to the structural and kinetic features of ion solvation.

Molecular Theory of Solutions

Molecular Theory of Solutions
Author: Arieh Ben-Naim
Publisher: Oxford University Press
Total Pages: 399
Release: 2006-07-27
Genre: Science
ISBN: 0199299692

This book presents new and updated developments in the molecular theory of mixtures and solutions. It is based on the theory of Kirkwood and Buff which was published more than fifty years ago. This theory has been dormant for almost two decades. It has recently become a very powerful and general tool to analyze, study and understand any type of mixtures from the molecular, or the microscopic point of view. The traditional approach to mixture has been, for many years, based on the study of excess thermodynamic quantities. This provides a kind of global information on the system. The new approach provides information on the local properties of the same system. Thus, the new approach supplements and enriches our information on mixtures and solutions.

Ions in Solution and their Solvation

Ions in Solution and their Solvation
Author: Yizhak Marcus
Publisher: John Wiley & Sons
Total Pages: 308
Release: 2015-06-18
Genre: Science
ISBN: 1118892275

The book starts with an exposition of the relevant properties of ions and continues with a description of their solvation in the gas phase. The book contains a large amount of factual information in the form of extensive tables of critically examined data and illustrations of the points made throughout. It covers: the relevant properties of prospective liquid solvents for the ions the process of the transfer of ions from the gas phase into a liquid where they are solvated various aspects of the solutions of the ions, such as structural and transport ones and the effects of the ions on the solvent dynamics and structure what happens in cases where the solvent is a mixture selective solvation takes place applications of the concepts expounded previously in fields such as electrochemistry, hydrometallurgy, separation chemistry, biophysics, and synthetic methods

Solvation Dynamics

Solvation Dynamics
Author: Chang Q Sun
Publisher: Springer
Total Pages: 316
Release: 2019-07-03
Genre: Science
ISBN: 981138441X

This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.

Thermodynamics of Geothermal Fluids

Thermodynamics of Geothermal Fluids
Author: Andri Stefánsson
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 360
Release: 2018-12-17
Genre: Science
ISBN: 1501508296

Volume 76 of Reviews in Mineralogy and Geochemistry presents an extended review of the topics conveyed in a short course on Geothermal Fluid Thermodynamics held prior to the 23rd Annual V.M. Goldschmidt Conference in Florence, Italy (August 24-25, 2013). It covers Thermodynamics of Geothermal Fluids, The Molecular-Scale Fundament of Geothermal Fluid Thermodynamics, Thermodynamics of Aqueous Species at High Temperatures and Pressures: Equations of State and Transport Theory, Mineral Solubility and Aqueous Speciation Under Hydrothermal Conditions to 300 °C – The Carbonate System as an Example, Thermodynamic Modeling of Fluid-Rock Interaction at Mid-Crustal to Upper-Mantle Conditions, Speciation and Transport of Metals and Metalloids in Geological Vapors, Solution Calorimetry Under Hydrothermal Conditions, Structure and Thermodynamics of Subduction Zone Fluids from Spectroscopic Studies and Thermodynamics of Organic Transformations in Hydrothermal Fluids.

Modeling Solvent Environments

Modeling Solvent Environments
Author: Michael Feig
Publisher: John Wiley & Sons
Total Pages: 334
Release: 2009-12-09
Genre: Science
ISBN: 3527629262

A comprehensive view of the current methods for modeling solvent environments with contributions from the leading researchers in the field. Throughout, the emphasis is placed on the application of such models in simulation studies of biological processes, although the coverage is sufficiently broad to extend to other systems as well. As such, this monograph treats a full range of topics, from statistical mechanics-based approaches to popular mean field formalisms, coarse-grained solvent models, more established explicit, fully atomic solvent models, and recent advances in applying ab initio methods for modeling solvent properties.