Solutions Manual To Accompany Nonlinear Programming
Download Solutions Manual To Accompany Nonlinear Programming full books in PDF, epub, and Kindle. Read online free Solutions Manual To Accompany Nonlinear Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mokhtar S. Bazaraa |
Publisher | : John Wiley & Sons |
Total Pages | : 130 |
Release | : 2014-08-22 |
Genre | : Mathematics |
ISBN | : 1118762320 |
As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts and methods discussed.
Author | : Mokhtar S. Bazaraa |
Publisher | : John Wiley & Sons |
Total Pages | : 818 |
Release | : 2013-06-12 |
Genre | : Mathematics |
ISBN | : 1118626303 |
COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.
Author | : James F. Epperson |
Publisher | : John Wiley & Sons |
Total Pages | : 579 |
Release | : 2013-06-06 |
Genre | : Mathematics |
ISBN | : 1118626230 |
Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.
Author | : Duane DeTemple |
Publisher | : John Wiley & Sons |
Total Pages | : 478 |
Release | : 2014-04-08 |
Genre | : Mathematics |
ISBN | : 1118652134 |
Written by two well-known scholars in the field, Combinatorial Reasoning: An Introduction to the Art of Counting presents a clear and comprehensive introduction to the concepts and methodology of beginning combinatorics. Focusing on modern techniques and applications, the book develops a variety of effective approaches to solving counting problems. Balancing abstract ideas with specific topical coverage, the book utilizes real world examples with problems ranging from basic calculations that are designed to develop fundamental concepts to more challenging exercises that allow for a deeper exploration of complex combinatorial situations. Simple cases are treated first before moving on to general and more advanced cases. Additional features of the book include: • Approximately 700 carefully structured problems designed for readers at multiple levels, many with hints and/or short answers • Numerous examples that illustrate problem solving using both combinatorial reasoning and sophisticated algorithmic methods • A novel approach to the study of recurrence sequences, which simplifies many proofs and calculations • Concrete examples and diagrams interspersed throughout to further aid comprehension of abstract concepts • A chapter-by-chapter review to clarify the most crucial concepts covered Combinatorial Reasoning: An Introduction to the Art of Counting is an excellent textbook for upper-undergraduate and beginning graduate-level courses on introductory combinatorics and discrete mathematics.
Author | : Edward Barry Saff |
Publisher | : John Wiley & Sons |
Total Pages | : 407 |
Release | : 2015-10-12 |
Genre | : Mathematics |
ISBN | : 1118953657 |
An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.
Author | : Anthony L. Peressini |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2012-09-30 |
Genre | : Mathematics |
ISBN | : 9781461269892 |
Nonlinear programming provides an excellent opportunity to explore an interesting variety of pure and solidly applicable mathematics, numerical analysis, and computing. This text develops some of the ideas and techniques involved in the optimization methods using calculus, leading to the study of convexity. This is followed by material on basic numerical methods, least squares, the Karush-Kuhn-Tucker theorem, penalty functions, and Lagrange multipliers. The authors have aimed their presentation at the student who has a working knowledge of matrix algebra and advanced calculus, but has had no previous exposure to optimization.
Author | : Der-San Chen |
Publisher | : John Wiley & Sons |
Total Pages | : 489 |
Release | : 2010-01-12 |
Genre | : Mathematics |
ISBN | : 0470373067 |
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
Author | : Chi-Tsong Chen |
Publisher | : Oxford University Press, USA |
Total Pages | : 662 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 9780195115956 |
Uses simple and efficient methods to develop results and design procedures, thus creating a non-exhaustive approach to presenting the material; Enables the reader to employ the results to carry out design. Thus, most results are discussed with an eye toward numerical computation; All design procedures in the text can be carried out using any software package that includes singular-value decomposition, and the solution of linear algebraic equations and the Lyapunov equation; All examples are developed for numerical computation and are illustrated using MATLAB, the most widely available software package.
Author | : M. S. Bazaraa |
Publisher | : Springer Science & Business Media |
Total Pages | : 203 |
Release | : 2012-12-06 |
Genre | : Business & Economics |
ISBN | : 3642482945 |
Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming.
Author | : Kenneth R. Baker |
Publisher | : John Wiley & Sons |
Total Pages | : 431 |
Release | : 2012-01-10 |
Genre | : Business & Economics |
ISBN | : 1118008979 |
Reflects the latest applied research and features state-of-the-art software for building and solving spreadsheet optimization models Thoroughly updated to reflect the latest topical and technical advances in the field, Optimization Modeling with Spreadsheets, Second Edition continues to focus on solving real-world optimization problems through the creation of mathematical models and the use of spreadsheets to represent and analyze those models. Developed and extensively classroom-tested by the author, the book features a systematic approach that equips readers with the skills to apply optimization tools effectively without the need to rely on specialized algorithms. This new edition uses the powerful software package Risk Solver Platform (RSP) for optimization, including its Evolutionary Solver, which employs many recently developed ideas for heuristic programming. The author provides expanded coverage of integer programming and discusses linear and nonlinear programming using a systematic approach that emphasizes the use of spreadsheet-based optimization tools. The Second Edition also features: Classifications for the various problem types, providing the reader with a broad framework for building and recognizing optimization models Network models that allow for a more general form of mass balance A systematic introduction to Data Envelopment Analysis (DEA) The identification of qualitative patterns in order to meaningfully interpret linear programming solutions An introduction to stochastic programming and the use of RSP to solve problems of this type Additional examples, exercises, and cases have been included throughout, allowing readers to test their comprehension of the material. In addition, a related website features Microsoft Office® Excel files to accompany the figures and data sets in the book. With its accessible and comprehensive presentation, Optimization Modeling with Spreadsheets, Second Edition is an excellent book for courses on deterministic models, optimization, and spreadsheet modeling at the upper-undergraduate and graduate levels. The book can also serve as a reference for researchers, practitioners, and consultants working in business, engineering, operations research, and management science.