Solid State Nmr Spectroscopy For Structural Investigations In Materials Science
Download Solid State Nmr Spectroscopy For Structural Investigations In Materials Science full books in PDF, epub, and Kindle. Read online free Solid State Nmr Spectroscopy For Structural Investigations In Materials Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Vladimir I. Bakhmutov |
Publisher | : CRC Press |
Total Pages | : 277 |
Release | : 2016-04-19 |
Genre | : Science |
ISBN | : 1439869642 |
Solid-state NMR is a powerful physical method widely applied in modern fundamental and applied science, medicine, and industry. Its role is particularly valuable in materials chemistry due to the capability of solid-state NMR to rapidly solve tasks connected with structural descriptions of complex systems on macro and/or molecular levels, and the i
Author | : Klaus Schmidt-Rohr |
Publisher | : Elsevier |
Total Pages | : 501 |
Release | : 2012-12-02 |
Genre | : Science |
ISBN | : 0080925626 |
NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations
Author | : Günter Engelhardt |
Publisher | : |
Total Pages | : 514 |
Release | : 1987 |
Genre | : Science |
ISBN | : |
Covers the dramatic developments in the past decade in the applications of high-resolution NMR to the study of solid materials such as inorganic silicates, aluminosilicates, and in particular, zeolites. Also covers a variety of NMR methods, including conventional FT NMR techniques, used to investigate sorbate-sorbent interactions and the structure of adsorbed molecules. Gives an historical background to the subject and a concise survey of basic principles and methods of high-resolution solid-state NMR. Then covers 29Si NMR of silicate solutions; general aspects of 29Si and 27Al NMR of the silicate and aluminosilicate framework; application of 29Si and 27Al NMR to silicates, aluminosilicates, and zeolites; NMR studies of nuclei other than 29Si and 27Al in zeolites and non-zeolitic silicates; high-resolution studies of adsorbed molecules, and much more.
Author | : Rongchun Zhang |
Publisher | : Royal Society of Chemistry |
Total Pages | : 590 |
Release | : 2019-07-29 |
Genre | : Science |
ISBN | : 178801863X |
Since the introduction of FT-NMR spectroscopy around five decades ago, NMR has achieved significant advances in hardware and methodologies, accompanied with the enhancement of spectral resolution and signal sensitivity. Rapid developments in the polymers field mean that accurate and quantitative characterization of polymer structures and dynamics is the keystone for precisely regulating and controlling the physical and chemical properties of the polymer. This book specifically focuses on NMR investigation of complex polymers for the polymer community as well as NMR spectroscopists, and will push the development of both fields. It covers the latest advances, for example high field DNP and ultrafast MAS methodologies, and show how these novel NMR methods characterize various synthetic and natural polymers.
Author | : Frances Separovic |
Publisher | : |
Total Pages | : 0 |
Release | : 2020 |
Genre | : Membranes (Biology) |
ISBN | : 9780750325325 |
The purpose of this book is to describe the methodology and applications of solid-state NMR spectroscopy to studies of membrane proteins, membrane-active peptides and model biological membranes. As well as structural studies, this book contains coverage of membrane interactions and molecular motions. Advances in biological solid-state NMR are very pertinent with high-field developments seeing applications in biological membranes and whole cells. Experts who are leaders in the development and application of biological solid-state NMR are chapter contributors. Part of Biophysical Society-IOP series.
Author | : Susan Schorr |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 481 |
Release | : 2021-07-05 |
Genre | : Technology & Engineering |
ISBN | : 3110675048 |
The knowledge about crystal structure and its correlation with physical properties is the prerequisite for designing new materials with taylored properties. This work provides for researchers and graduates a valuable resource on various techniques for crystal structure determinations. By discussing a broad range of different materials and tools the authors enable the understanding of why a material might be suitable for a particular application.
Author | : Norbert Müller |
Publisher | : Springer Science & Business Media |
Total Pages | : 143 |
Release | : 2013-04-17 |
Genre | : Science |
ISBN | : 3709137152 |
Why to apply solid-state NMR? - By now, we should have learned that NMR is mainly used for the study of molecules in solution, while x-ray diffraction is the method of choice for solids. Based on this fact, the two recent 'NMR-Nobelprizes' went indeed into the liquid phase: my own one eleven years ago, and particularly the most recent one to Kurt Wuthrich. His prize is beyond any doubts very well justified. His contribution towards the study of biomolecules in solution, in their native (or almost native) environment is truly monumental. We all will profit from it indirectly when one of our future diseases will be cured with better drugs, based on the insightful knowledge gained through liquid-state NMR. Two fields of NMR are still left out of the Nobel Prize game: magnetic reso nance imaging (MRI) and solid-state NMR. The disrespect for MRI in Stockholm is particularly difficult to understand; but this is not a subject to be discussed at the present place. Solid-state NMR is the third of the three great fields of NMR, powerful already today and very promising for the near future.
Author | : Karen Scrivener |
Publisher | : CRC Press |
Total Pages | : 540 |
Release | : 2018-10-09 |
Genre | : Technology & Engineering |
ISBN | : 1498738672 |
A Practical Guide from Top-Level Industry Scientists As advanced teaching and training in the development of cementitious materials increase, the need has emerged for an up-to-date practical guide to the field suitable for graduate students and junior and general practitioners. Get the Best Use of Different Techniques and Interpretations of the Results This edited volume provides the cement science community with a state-of-the-art overview of analytical techniques used in cement chemistry to study the hydration and microstructure of cements. Each chapter focuses on a specific technique, not only describing the basic principles behind the technique, but also providing essential, practical details on its application to the study of cement hydration. Each chapter sets out present best practice, and draws attention to the limitations and potential experimental pitfalls of the technique. Databases that supply examples and that support the analysis and interpretation of the experimental results strengthen a very valuable ready reference. Utilizing the day-to-day experience of practical experts in the field, this book: Covers sample preparation issues Discusses commonly used techniques for identifying and quantifying the phases making up cementitious materials (X-ray diffraction and thermogravimetric analysis) Presents good practice oncalorimetry and chemical shrinkage methods for studying cement hydration kinetics Examines two different applications of nuclear magnetic resonance (solid state NMR and proton relaxometry) Takes a look at electron microscopy, the preeminent microstructural characterization technique for cementitious materials Explains how to use and interpret mercury intrusion porosimetry Details techniques for powder characterization of cementitious materials Outlines the practical application of phase diagrams for hydrated cements Avoid common pitfalls by using A Practical Guide to Microstructural Analysis of Cementitious Materials. A one-of-a-kind reference providing the do’s and don’ts of cement chemistry, the book presents the latest research and development of characterisation techniques for cementitious materials, and serves as an invaluable resource for practicing professionals specializing in cement and concrete materials and other areas of cement and concrete technology.
Author | : The Nuclear Magnetic Resonance Society of Japan |
Publisher | : Springer |
Total Pages | : 634 |
Release | : 2017-11-23 |
Genre | : Science |
ISBN | : 9811059667 |
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.
Author | : Graham A. Webb |
Publisher | : Elsevier |
Total Pages | : 352 |
Release | : 2005-09-23 |
Genre | : Reference |
ISBN | : 9780125054553 |
Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has grown to such importance as NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR has established itself as a premier means for the specialist and nonspecialist alike to become familiar with new techniques and applications of NMR spectroscopy. * Includes comprehensive review articles on NMR Spectroscopy * NMR is used in all branches of science * No other technique has grown to such importance as NMR Spectroscopy in recent years