Solar Electric Propulsion Mission Architectures

Solar Electric Propulsion Mission Architectures
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 34
Release: 2018-06-20
Genre:
ISBN: 9781721583942

This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed from the earliest missions in the 1960's, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions. Kerslake, Thomas W. Glenn Research Center NASA/TM-2003-212456, NAS 1.15:212456, E-13995

Primitive Meteorites and Asteroids

Primitive Meteorites and Asteroids
Author: Neyda M. Abreu
Publisher: Elsevier
Total Pages: 560
Release: 2018-07-14
Genre: Science
ISBN: 0128133260

Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration. - Presents the most current data and information on the mission-relevant characteristics of primitive asteroids - Addresses the physical, chemical and spectral characteristics of carbonaceous chondritic meteorites and the bearings on successful exploration of their parent asteroids - Includes chapters on geotechnical properties and resource extraction

Launching Science

Launching Science
Author: National Research Council
Publisher: National Academies Press
Total Pages: 157
Release: 2009-02-12
Genre: Science
ISBN: 0309178118

In January 2004 NASA was given a new policy direction known as the Vision for Space Exploration. That plan, now renamed the United States Space Exploration Policy, called for sending human and robotic missions to the Moon, Mars, and beyond. In 2005 NASA outlined how to conduct the first steps in implementing this policy and began the development of a new human-carrying spacecraft known as Orion, the lunar lander known as Altair, and the launch vehicles Ares I and Ares V. Collectively, these are called the Constellation System. In November 2007 NASA asked the National Research Council (NRC) to evaluate the potential for new science opportunities enabled by the Constellation System of rockets and spacecraft. The NRC committee evaluated a total of 17 mission concepts for future space science missions. Of those, the committee determined that 12 would benefit from the Constellation System and five would not. This book presents the committee's findings and recommendations, including cost estimates, a review of the technical feasibility of each mission, and identification of the missions most deserving of future study.

Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 123
Release: 2016-08-09
Genre: Technology & Engineering
ISBN: 0309440998

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Human Missions to Mars

Human Missions to Mars
Author: Donald Rapp
Publisher: Springer Nature
Total Pages: 650
Release: 2023-01-01
Genre: Science
ISBN: 3031207262

In this book, Donald Rapp looks at human missions to Mars from a technological perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out. This third edition provides extensive updating and additions to the last edition, including new sections, and many new figures and tables, and references.