Soil Liquefaction during Recent Large-Scale Earthquakes

Soil Liquefaction during Recent Large-Scale Earthquakes
Author: Rolando P. Orense
Publisher: CRC Press
Total Pages: 282
Release: 2014-04-15
Genre: Technology & Engineering
ISBN: 1138026433

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. Soil Liquefaction during Recent Large-Scale Earthquakes will be of great interest to researchers, academics, industry practitioners and other professionals involved in Earthquake Geotechnical Engineering, Foundation Engineering, Earthquake Engineering and Structural Dynamics.

Soil Liquefaction during Recent Large-Scale Earthquakes

Soil Liquefaction during Recent Large-Scale Earthquakes
Author: Rolando P. Orense
Publisher: CRC Press
Total Pages: 281
Release: 2014-04-15
Genre: Technology & Engineering
ISBN: 1315759411

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in

State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences

State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences
Author: National Academies of Sciences, Engineering, and Medicine
Publisher:
Total Pages: 350
Release: 2019-01-30
Genre:
ISBN: 9780309440271

Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.

Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls

Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls
Author: Hemanta Hazarika
Publisher: Springer
Total Pages: 629
Release: 2016-09-01
Genre: Science
ISBN: 4431562052

This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, designers, consultants, government officials, and academicians involved in the mitigation of natural hazards. The findings and other information provided here is expected to contribute toward the development of a new chapter in disaster prevention and mitigation of geotechnical structures.

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions
Author: Francesco Silvestri
Publisher: CRC Press
Total Pages: 5999
Release: 2019-10-22
Genre: Technology & Engineering
ISBN: 0429633505

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.

Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022)

Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022)
Author: Lanmin Wang
Publisher: Springer Nature
Total Pages: 2417
Release: 2022-09-19
Genre: Science
ISBN: 3031118987

The 4th International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-IV) is held in Beijing, China. The PBD-IV Conference is organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering - Technical Committee TC203 on Earthquake Geotechnical Engineering and Associated Problems (ISSMGE-TC203). The PBD-I, PBD-II, and PBD-III events in Japan (2009), Italy (2012), and Canada (2017) respectively, were highly successful events for the international earthquake geotechnical engineering community. The PBD events have been excellent companions to the International Conference on Earthquake Geotechnical Engineering (ICEGE) series that TC203 has held in Japan (1995), Portugal (1999), USA (2004), Greece (2007), Chile (2011), New Zealand (2015), and Italy (2019). The goal of PBD-IV is to provide an open forum for delegates to interact with their international colleagues and advance performance-based design research and practices for earthquake geotechnical engineering.

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions
Author: Francesco Silvestri
Publisher: CRC Press
Total Pages: 7743
Release: 2019-07-19
Genre: Technology & Engineering
ISBN: 0429632010

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.

Soil Liquefaction

Soil Liquefaction
Author: Michael Jefferies
Publisher: CRC Press
Total Pages: 625
Release: 2006-09-04
Genre: Science
ISBN: 020330196X

Soil liquefaction is a major concern in areas of the world subject to seismic activity or other repeated vibration loads. This book brings together a large body of information on the topic, and presents it within a unified and simple framework. The result is a book which will provide the practising civil engineer with a very sound understanding of

Soil Dynamics and Earthquake Geotechnical Engineering

Soil Dynamics and Earthquake Geotechnical Engineering
Author: Boominathan Adimoolam
Publisher: Springer
Total Pages: 268
Release: 2018-06-09
Genre: Science
ISBN: 9811305625

This book gathers selected proceedings of the annual conference of the Indian Geotechnical Society, and covers various aspects of soil dynamics and earthquake geotechnical engineering. The book includes a wide range of studies on seismic response of dams, foundation-soil systems, natural and man-made slopes, reinforced-earth walls, base isolation systems and so on, especially focusing on the soil dynamics and case studies from the Indian subcontinent. The book also includes chapters addressing related issues such as landslide risk assessments, liquefaction mitigation, dynamic analysis of mechanized tunneling, and advanced seismic soil-structure-interaction analysis. Given its breadth of coverage, the book offers a useful guide for researchers and practicing civil engineers alike.