Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
Author: Fritz Gesztesy
Publisher: American Mathematical Soc.
Total Pages: 472
Release: 2007
Genre: Mathematics
ISBN: 9780821842492

This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.

Random Schrödinger Operators

Random Schrödinger Operators
Author: Margherita Disertori
Publisher: SMF
Total Pages: 244
Release: 2008
Genre: Mathematics
ISBN:

During the last thirty years, random Schrodinger operators, which originated in condensed matter physics, have been studied intensively and very productively. The theory is at the crossroads of a number of mathematical fields: the theory of operators, partial differential equations, the theory of probabilities, in particular the study of stochastic processes and that of random walks and Brownian motion in a random environment. This monograph aims to give the reader a panorama of the subject, from the now-classic foundations to very recent developments.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author: Henrik Bruus
Publisher: Oxford University Press
Total Pages: 458
Release: 2004-09-02
Genre: Science
ISBN: 0198566336

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Random Operators

Random Operators
Author: Michael Aizenman
Publisher: American Mathematical Soc.
Total Pages: 343
Release: 2015-12-11
Genre: Mathematics
ISBN: 1470419130

This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization--presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results. The text incorporates notes from courses that were presented at the authors' respective institutions and attended by graduate students and postdoctoral researchers.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
Author: Semyon Dyatlov
Publisher: American Mathematical Soc.
Total Pages: 649
Release: 2019-09-10
Genre: Mathematics
ISBN: 147044366X

Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.

Mathematical Modeling in Optical Science

Mathematical Modeling in Optical Science
Author: Gang Bao
Publisher: SIAM
Total Pages: 349
Release: 2001-01-01
Genre: Science
ISBN: 9780898717594

This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.