SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
Total Pages: 1165
Release: 2022-04-11
Genre: Computers
ISBN:

Book 1: BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of more than 100,000 customers mentioning their loan status, current loan amount, monthly debt, etc. There are 19 features in the dataset. The dataset attributes are as follows: Loan ID, Customer ID, Loan Status, Current Loan Amount, Term, Credit Score, Annual Income, Years in current job, Home Ownership, Purpose, Monthly Debt, Years of Credit History, Months since last delinquent, Number of Open Accounts, Number of Credit Problems, Current Credit Balance, Maximum Open Credit, Bankruptcies, and Tax Liens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 2: OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Opinion mining (sometimes known as sentiment analysis or emotion AI) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This dataset was created for the Paper 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015. It contains sentences labelled with a positive or negative sentiment. Score is either 1 (for positive) or 0 (for negative). The sentences come from three different websites/fields: imdb.com, amazon.com, and yelp.com. For each website, there exist 500 positive and 500 negative sentences. Those were selected randomly for larger datasets of reviews. Amazon: contains reviews and scores for products sold on amazon.com in the cell phones and accessories category, and is part of the dataset collected by McAuley and Leskovec. Scores are on an integer scale from 1 to 5. Reviews considered with a score of 4 and 5 to be positive, and scores of 1 and 2 to be negative. The data is randomly partitioned into two halves of 50%, one for training and one for testing, with 35,000 documents in each set. IMDb: refers to the IMDb movie review sentiment dataset originally introduced by Maas et al. as a benchmark for sentiment analysis. This dataset contains a total of 100,000 movie reviews posted on imdb.com. There are 50,000 unlabeled reviews and the remaining 50,000 are divided into a set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a binary sentiment label, either positive or negative. Yelp: refers to the dataset from the Yelp dataset challenge from which we extracted the restaurant reviews. Scores are on an integer scale from 1 to 5. Reviews considered with scores 4 and 5 to be positive, and 1 and 2 to be negative. The data is randomly generated a 50-50 training and testing split, which led to approximately 300,000 documents for each set. Sentences: for each of the datasets above, labels are extracted and manually 1000 sentences are manually labeled from the test set, with 50% positive sentiment and 50% negative sentiment. These sentences are only used to evaluate our instance-level classifier for each dataset3. They are not used for model training, to maintain consistency with our overall goal of learning at a group level and predicting at the instance level. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 3: EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI In the dataset used in this project, there are two columns, Text and Emotion. Quite self-explanatory. The Emotion column has various categories ranging from happiness to sadness to love and fear. You will build and implement machine learning and deep learning models which can identify what words denote what emotion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 4: HATE SPEECH DETECTION AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The objective of this task is to detect hate speech in tweets. For the sake of simplicity, a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label '1' denotes the tweet is racist/sexist and label '0' denotes the tweet is not racist/sexist, the objective is to predict the labels on the test dataset. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 5: TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 6: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Machine Learning for Kids

Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
Total Pages: 290
Release: 2021-01-19
Genre: Computers
ISBN: 1718500572

A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+

Deep Learning with Python

Deep Learning with Python
Author: Francois Chollet
Publisher: Simon and Schuster
Total Pages: 597
Release: 2017-11-30
Genre: Computers
ISBN: 1638352046

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Data Science and Machine Learning

Data Science and Machine Learning
Author: Dirk P. Kroese
Publisher: CRC Press
Total Pages: 538
Release: 2019-11-20
Genre: Business & Economics
ISBN: 1000730778

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Hands-On Machine Learning with R

Hands-On Machine Learning with R
Author: Brad Boehmke
Publisher: CRC Press
Total Pages: 373
Release: 2019-11-07
Genre: Business & Economics
ISBN: 1000730433

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Understanding Machine Learning

Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
Total Pages: 415
Release: 2014-05-19
Genre: Computers
ISBN: 1107057132

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
Total Pages: 0
Release: 2016-08-23
Genre: Computers
ISBN: 9781493938438

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Text Analytics with Python

Text Analytics with Python
Author: Dipanjan Sarkar
Publisher: Apress
Total Pages: 397
Release: 2016-11-30
Genre: Computers
ISBN: 1484223888

Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Artificial Intelligence with Python

Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
Total Pages: 437
Release: 2017-01-27
Genre: Computers
ISBN: 1786469677

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Microsoft Azure Essentials Azure Machine Learning

Microsoft Azure Essentials Azure Machine Learning
Author: Jeff Barnes
Publisher: Microsoft Press
Total Pages: 393
Release: 2015-04-25
Genre: Computers
ISBN: 073569818X

Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.