Ferrous Powder Metallurgy

Ferrous Powder Metallurgy
Author: Andrej Šalak
Publisher: Cambridge International Science Publishing
Total Pages: 478
Release: 1995
Genre: Technology & Engineering
ISBN:

Because of the position of ferrous powder metallurgy, the author deals with the theoretical fundamentals and technical and technological aspects of the current state of knowledge in ferrous powder metallurgy so that special attention may be given to all factors influencing parts and materials with the required properties, form and dimensions, stressing their higher economic efficiency. The book also shows the extensive possibilities for further development of ferrous powder metallurgy and should therefore contribute to increasing the level of general and detailed knowledge of experts working in this area and should help in transition from fabrication of parts by conventional methods with all typical economic and ecological shortcomings to fabrication by powder metallurgy methods.

Handbook of Residual Stress and Deformation of Steel

Handbook of Residual Stress and Deformation of Steel
Author: George E. Totten
Publisher: ASM International
Total Pages: 496
Release: 2002
Genre: Technology & Engineering
ISBN: 1615032274

Annotation Examines the factors that contribute to overall steel deformation problems. The 27 articles address the effect of materials and processing, the measurement and prediction of residual stress and distortion, and residual stress formation in the shaping of materials, during hardening processes, and during manufacturing processes. Some of the topics are the stability and relaxation behavior of macro and micro residual stresses, stress determination in coatings, the effects of process equipment design, the application of metallo- thermo-mechanic to quenching, inducing compressive stresses through controlled shot peening, and the origin and assessment of residual stresses during welding and brazing. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Machinability of Powder Metallurgy Steels

Machinability of Powder Metallurgy Steels
Author: Andrej Šalak
Publisher: Cambridge Int Science Publishing
Total Pages: 551
Release: 2005
Genre: Technology & Engineering
ISBN: 1898326827

The machinability of powder metallurgy steels is poorer compared with wrought steels of appropriate composition and/or mechanical [properties. The reason for it is a larger number of material and processing variables affecting the final properties of a sintered material. Therefore the machining of powder metallurgy (PM) steels is a permanent subject of investigation and practice. The aim of the book is to make on the basis of present knowledge an overview of all interacting factors in machining process including those applied for the improvement of the machinability. There are the properties of basic plain iron and alloyed powders, various additions, compaction and sintering conditions. Effect of porosity, individual alloying elements and microstructure character is considered. The description of the basic machining processes with their characteristics and with the characteristics of the tool geometry belongs to the mentioned factors. For the improvement of machinability of PM steels different machining aids, as S, MnS, MoS2 and other are frequently used and their chemical and physical characteristics are given. The effect of various machining aids used on machinability of sintered plain iron, iron-carbon and of steels alloyed with Cu, Ni, Mo, Cr, Mn including powder forged steels with very different mechanical properties and very different microstructures is analysed and summarized. The high-speed steel, hardmetal and other tools with their geometry as the part of the cutting process are described in relation to the sintered powder materials. The recommendations for machining of various steels enclose the present knowledge about the machinability of powder metallurgy steels.

Sintering of Advanced Materials

Sintering of Advanced Materials
Author: Zhigang Zak Fang
Publisher: Elsevier
Total Pages: 502
Release: 2010-09-27
Genre: Technology & Engineering
ISBN: 1845699947

Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. Explores the thermodynamics of sintering including sinter bonding and densification Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials

Advances in Powder Metallurgy

Advances in Powder Metallurgy
Author: Isaac Chang
Publisher: Elsevier
Total Pages: 624
Release: 2013-08-31
Genre: Technology & Engineering
ISBN: 085709890X

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas. Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials. Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys Reviews the manufacture and densification of PM components and explores joining techniques