Singular Perturbations and Boundary Layers

Singular Perturbations and Boundary Layers
Author: Gung-Min Gie
Publisher: Springer
Total Pages: 424
Release: 2018-11-21
Genre: Mathematics
ISBN: 3030006387

Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)
Author: John J H Miller
Publisher: World Scientific
Total Pages: 191
Release: 2012-02-29
Genre: Mathematics
ISBN: 9814452777

Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations
Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2006-06-04
Genre: Mathematics
ISBN: 0387283137

Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems
Author: Torsten Linß
Publisher: Springer
Total Pages: 331
Release: 2009-11-21
Genre: Mathematics
ISBN: 3642051340

This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

The Boundary Function Method for Singular Perturbed Problems

The Boundary Function Method for Singular Perturbed Problems
Author: Adelaida B. Vasil'eva
Publisher: SIAM
Total Pages: 234
Release: 1995-01-01
Genre: Mathematics
ISBN: 9781611970784

This is the first book published in English devoted solely to the boundary function method, which is one of the asymptotic methods. This method provides an effective and simple way to obtain asymptotic approximations for the solutions of certain ordinary and partial differential equations containing small parameters in front of the highest derivatives. These equations, called singularly perturbed equations, are often used in modeling. In addition to numerous examples, the book includes discussions on singularly perturbed problems from chemical kinetics and heat conduction, semiconductor device modeling, and mathematical biology. The book also contains a variety of original ideas and explicit calculations previously available only in journal literature, as well as many concrete applied problems illustrating the boundary function method algorithms. Quite general asymptotic results described in the book are rigorous in the sense that, along with the asymptotic algorithms, in most cases the theorems on estimation of the remainder terms are presented. A survey of results of Russian mathematicians on the subject is provided; many of these results are not well known in the West. Based on the Russian edition of the textbook by Vasil'eva and Butuzov, this American edition, prepared by Kalachev, differs in many aspects. The text of the book has been revised substantially, some new material has been added to every chapter, and more examples, exercises, and new references on asymptotic methods and their applications have been included.

Modern Trends in Structural and Solid Mechanics 1

Modern Trends in Structural and Solid Mechanics 1
Author: Noel Challamel
Publisher: John Wiley & Sons
Total Pages: 306
Release: 2021-06-08
Genre: Science
ISBN: 1119831873

This book - comprised of three separate volumes - presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This first volume is devoted to the statics and stability of solid and structural members. Modern Trends in Structural and Solid Mechanics 1 has broad scope, covering topics such as: buckling of discrete systems (elastic chains, lattices with short and long range interactions, and discrete arches), buckling of continuous structural elements including beams, arches and plates, static investigation of composite plates, exact solutions of plate problems, elastic and inelastic buckling, dynamic buckling under impulsive loading, buckling and post-buckling investigations, buckling of conservative and non-conservative systems and buckling of micro and macro-systems. This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Difference Methods for Singular Perturbation Problems

Difference Methods for Singular Perturbation Problems
Author: Grigory I. Shishkin
Publisher: CRC Press
Total Pages: 409
Release: 2008-09-22
Genre: Mathematics
ISBN: 0203492412

Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e

Singular Perturbation Methods in Control

Singular Perturbation Methods in Control
Author: Petar Kokotovic
Publisher: SIAM
Total Pages: 386
Release: 1999-01-01
Genre: Mathematics
ISBN: 9781611971118

Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.

Analytical and Numerical Methods for Convection-dominated and Singularly Perturbed Problems

Analytical and Numerical Methods for Convection-dominated and Singularly Perturbed Problems
Author: Lubin Vulkov
Publisher: Nova Publishers
Total Pages: 298
Release: 2000
Genre: Mathematics
ISBN: 9781560728481

This volume is the Proceedings of the Workshop on Analytical and Computational Methods for Convection-Dominated and Singularly Perturbed Problems, which took place in Lozenetz, Bulgaria, 27-31 August 1998. The workshop attracted about 50 participants from 12 countries. The volume includes 13 invited lectures and 19 contributed papers presented at the workshop and thus gives an overview of the latest developments in both the theory and applications of advanced numerical methods to problems having boundary and interior layers. There was an emphasis on experiences from the numerical analysis of such problems and on theoretical developments. The aim of the workshop was to provide an opportunity for scientists from the East and the West, who develop robust methods for singularly perturbed and related problems and also who apply these methods to real-life problems, to discuss recent achievements in this area and to exchange ideas with a view of possible research co-operation.

BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods

BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods
Author: Carmelo Clavero
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2011-05-11
Genre: Mathematics
ISBN: 3642196659

This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.