Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation

Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation
Author: Zohar Yosibash
Publisher: Springer Science & Business Media
Total Pages: 473
Release: 2011-12-02
Genre: Mathematics
ISBN: 146141508X

This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.

Mathematical Methods And Models In Composites

Mathematical Methods And Models In Composites
Author: Vladislav Mantic
Publisher: World Scientific
Total Pages: 521
Release: 2013-10-25
Genre: Technology & Engineering
ISBN: 178326411X

This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics covered include: scaling and homogenization procedures in composite structures, thin plate and wave solutions in anisotropic materials, laminated structures, instabilities, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing. The results presented are useful in the design, fabrication, testing, and industrial applications of composite components and structures. The book is written by well-known experts in different areas of applied mathematics, physics, and composite engineering and is an essential source of reference for graduate and doctoral students, as well as researchers. It is also suitable for non-experts in composites who wish to have an overview of both the mathematical methods and models used in this area and the related open problems requiring further research.

Numerical Mathematics and Advanced Applications ENUMATH 2015

Numerical Mathematics and Advanced Applications ENUMATH 2015
Author: Bülent Karasözen
Publisher: Springer
Total Pages: 613
Release: 2016-11-09
Genre: Mathematics
ISBN: 3319399292

The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.

Mathematical Methods And Models In Composites (Second Edition)

Mathematical Methods And Models In Composites (Second Edition)
Author: Vladislav Mantic
Publisher: World Scientific
Total Pages: 731
Release: 2023-03-10
Genre: Mathematics
ISBN: 1800611897

Mathematical Methods and Models in Composites (Second Edition) provides an in-depth treatment of modern and rigorous mathematical methods and models applied to composites modeling on the micro-, meso-, and macro scale. There has been a steady growth in the diversity of such methods and models that are used in the analysis and characterization of composites, their behavior, and their associated phenomena and processes. This second edition expands upon the success of the first edition, and has been substantially revised and updated.Written by well-known experts in different areas of applied mathematics, physics, and composite engineering, this book is mainly focused on continuous fiber reinforced composites and their ever increasing range of applications (for example, in the aerospace industry), though it also covers other kind of composites. The chapters cover a range of topics including, but not limited to: scaling and homogenization procedures in composites, thin plate and wave solutions in anisotropic materials, laminated structures, fiber-reinforced nonlinearly elastic solids, buckling and postbuckling, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing such as resin transfer molding. The results presented are useful for the design, fabrication, testing and industrial applications of composite components and structures.This book is an essential reference for graduate and doctoral students, as well as researchers in mathematics, physics and composite engineering. Explanations and references in the book are sufficiently detailed so as to provide the necessary background to further investigate the fascinating subject of composites modeling and explore relevant research literature. It is also suitable for non-experts who wish to have an overview of the mathematical methods and models used for composites, and of the open problems in this area that require further research.

Finite Element Analysis

Finite Element Analysis
Author: Barna Szabó
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2021-06-22
Genre: Technology & Engineering
ISBN: 1119426421

Finite Element Analysis An updated and comprehensive review of the theoretical foundation of the finite element method The revised and updated second edition of Finite Element Analysis: Method, Verification, and Validation offers a comprehensive review of the theoretical foundations of the finite element method and highlights the fundamentals of solution verification, validation, and uncertainty quantification. Written by noted experts on the topic, the book covers the theoretical fundamentals as well as the algorithmic structure of the finite element method. The text contains numerous examples and helpful exercises that clearly illustrate the techniques and procedures needed for accurate estimation of the quantities of interest. In addition, the authors describe the technical requirements for the formulation and application of design rules. Designed as an accessible resource, the book has a companion website that contains a solutions manual, PowerPoint slides for instructors, and a link to finite element software. This important text: Offers a comprehensive review of the theoretical foundations of the finite element method Puts the focus on the fundamentals of solution verification, validation, and uncertainty quantification Presents the techniques and procedures of quality assurance in numerical solutions of mathematical problems Contains numerous examples and exercises Written for students in mechanical and civil engineering, analysts seeking professional certification, and applied mathematicians, Finite Element Analysis: Method, Verification, and Validation, Second Edition includes the tools, concepts, techniques, and procedures that help with an understanding of finite element analysis.

The Engineering Index Annual

The Engineering Index Annual
Author:
Publisher:
Total Pages: 2264
Release: 1992
Genre: Engineering
ISBN:

Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.

Finite Element Bibliography

Finite Element Bibliography
Author: Gerard De Vries
Publisher: Springer
Total Pages: 706
Release: 1976-12
Genre: Reference
ISBN:

Thjs bibliography had its inception in 1967, when the compilers first attempted a comprehensive cov erage of the finite element literature using both manual and computer-based retrieval. Initially, the data base was stored on a card index, but this was subsequently transferred to punched cards and magnetic tape. Computer processing was adopted at an early stage to derive the three index formats from the data base. Over the subsequent years, several versions of the bibliography were produced, with two of these being made available in a report form to other researchers. From the widespread interest in these documents, it became evident that there was a need for a commercially-available comprehensive bibliography in this area. A major effort was undertaken to revise, update, and extend the data base, resulting in this present volume. The bibliography covers the period 1956-1975 primarily, although some earlier publications of histori cal interest are included. The citations are not restricted to the English language and documents are listed in many languages and from diverse places of origin. All publication formats were accepted, so that references will be found to books, monographs, journal papers and articles, theses, dissertations, reports, surveys, and the like.