Singularities and Groups in Bifurcation Theory

Singularities and Groups in Bifurcation Theory
Author: Martin Golubitsky
Publisher: Springer Science & Business Media
Total Pages: 551
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461245745

Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.

Singularities and Groups in Bifurcation Theory

Singularities and Groups in Bifurcation Theory
Author: Martin Golubitsky
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2013-11-27
Genre: Mathematics
ISBN: 146125034X

This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.

Singularities, Bifurcations and Catastrophes

Singularities, Bifurcations and Catastrophes
Author: James Montaldi
Publisher: Cambridge University Press
Total Pages: 450
Release: 2021-06-24
Genre: Mathematics
ISBN: 1009064398

Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
Total Pages: 648
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475739788

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

The Symmetry Perspective

The Symmetry Perspective
Author: Martin Golubitsky
Publisher: Birkhäuser
Total Pages: 338
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3034881673

The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS

Bifurcation Theory And Applications

Bifurcation Theory And Applications
Author: Shouhong Wang
Publisher: World Scientific
Total Pages: 391
Release: 2005-06-27
Genre: Science
ISBN: 9814480592

This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Singularities and Groups in Bifurcation Theory

Singularities and Groups in Bifurcation Theory
Author: Martin Golubitsky
Publisher: Springer
Total Pages: 466
Release: 1984-12-05
Genre: Mathematics
ISBN: 9780387909998

This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.

Numerical Methods for Bifurcations of Dynamical Equilibria

Numerical Methods for Bifurcations of Dynamical Equilibria
Author: Willy J. F. Govaerts
Publisher: SIAM
Total Pages: 384
Release: 2000-01-01
Genre: Mathematics
ISBN: 9780898719543

Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.

Bifurcation Theory and Applications

Bifurcation Theory and Applications
Author: Tian Ma
Publisher: World Scientific
Total Pages: 392
Release: 2005
Genre: Science
ISBN: 9812562877

- Provides a comprehensive and intuitive review of existing bifurcation theories - New theories for bifurcations from eigenvalues with even multiplicity - General recipes for applications

Topological Nonlinear Analysis

Topological Nonlinear Analysis
Author: Michele Matzeu
Publisher: Springer Science & Business Media
Total Pages: 542
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461225701

Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re sults.