Simulation Of Membrane Reactors
Download Simulation Of Membrane Reactors full books in PDF, epub, and Kindle. Read online free Simulation Of Membrane Reactors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Angelo Bruno Basile |
Publisher | : |
Total Pages | : 0 |
Release | : 2009 |
Genre | : Membrane reactors |
ISBN | : 9781606924259 |
Mathematics is an effective tool to study and model the world in which we live. Schematically, a model is the representation of a system or a process obtained by substituting to the real phenomenon another one in a more familiar field through simplifications, abstractions and analogies. In this book the authors introduce tools needed to carry out computer simulations of membrane reactors. These simulations serve as a complement to conventional experiments, enabling us to learn something new, something that cannot be found out in other ways. This book emphasises the utility of mathematical modelling as an effective tool for predicting/simulating various membrane reactors processes working under different scenarios. The book is divided in 11 chapters dealing with the approach to different membrane reactors. The separation properties of the membranes are introduced first and used in simple simulations in which no reaction takes place. Afterwards, different approaches for simulation of different membrane reactors (porous, dense, zeolitic, metallic and polymeric, photocatalytic, bio- membrane reactors) are introduced and used is base case studies. Finally, the last chapter briefly introduces new numerical techniques applied to membrane and membrane reactors with particular attention to some aspects of quantum mechanics.
Author | : Angelo Basile |
Publisher | : Elsevier |
Total Pages | : 697 |
Release | : 2013-02-08 |
Genre | : Technology & Engineering |
ISBN | : 0857097334 |
Membrane reactors are increasingly replacing conventional separation, process and conversion technologies across a wide range of applications. Exploiting advanced membrane materials, they offer enhanced efficiency, are very adaptable and have great economic potential. There has therefore been increasing interest in membrane reactors from both the scientific and industrial communities, stimulating research and development. The two volumes of the Handbook of membrane reactors draw on this research to provide an authoritative review of this important field.Volume 1 explores fundamental materials science, design and optimisation, beginning with a review of polymeric, dense metallic and composite membranes for membrane reactors in part one. Polymeric and nanocomposite membranes for membrane reactors, inorganic membrane reactors for hydrogen production, palladium-based composite membranes and alternatives to palladium-based membranes for hydrogen separation in membrane reactors are all discussed. Part two goes on to investigate zeolite, ceramic and carbon membranes and catalysts for membrane reactors in more depth. Finally, part three explores membrane reactor modelling, simulation and optimisation, including the use of mathematical modelling, computational fluid dynamics, artificial neural networks and non-equilibrium thermodynamics to analyse varied aspects of membrane reactor design and production enhancement.With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of membrane reactors provide an authoritative guide for membrane reactor researchers and materials scientists, chemical and biochemical manufacturers, industrial separations and process engineers, and academics in this field. - Considers polymeric, dense metallic and composite membranes for membrane reactors - Discusses cereamic and carbon for membrane reactors in detail - Reactor modelling, simulation and optimisation is also discussed
Author | : Angelo Basile |
Publisher | : Elsevier |
Total Pages | : 973 |
Release | : 2013-04-04 |
Genre | : Technology & Engineering |
ISBN | : 0857097342 |
Membrane reactors are increasingly replacing conventional separation, process and conversion technologies across a wide range of applications. Exploiting advanced membrane materials, they offer enhanced efficiency, are very adaptable and have great economic potential. There has therefore been increasing interest in membrane reactors from both the scientific and industrial communities, stimulating research and development. The two volumes of the Handbook of membrane reactors draw on this research to provide an authoritative review of this important field.Volume 2 reviews reactor types and industrial applications, beginning in part one with a discussion of selected types of membrane reactor and integration of the technology with industrial processes. Part two goes on to explore the use of membrane reactors in chemical and large-scale hydrogen production from fossil fuels. Electrochemical devices and transport applications of membrane reactors are the focus of part three, before part four considers the use of membrane reactors in environmental engineering, biotechnology and medicine. Finally, the book concludes with a discussion of the economic aspects of membrane reactors.With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of membrane reactors provide an authoritative guide for membrane reactor researchers and materials scientists, chemical and biochemical manufacturers, industrial separations and process engineers, and academics in this field. - Discusses integration of membrane technology with industrial processes - Explores the use of membrane reactors in chemical and large-scale hydrogen production from fossil fuels - Considers electrochemical devices and transport applications of membrane reactors
Author | : Faisal I. Hai |
Publisher | : IWA Publishing |
Total Pages | : 484 |
Release | : 2013-11-01 |
Genre | : Science |
ISBN | : 1780400659 |
In recent years the MBR market has experienced unprecedented growth. The best practice in the field is constantly changing and unique quality requirements and management issues are regularly emerging. Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse comprehensively covers the salient features and emerging issues associated with the MBR technology. The book provides thorough coverage starting from biological aspects and fundamentals of membranes, via modeling and design concepts, to practitioners’ perspective and good application examples. Membrane Biological Reactors focuses on all the relevant emerging issues raised by including the latest research from renowned experts in the field. It is a valuable reference to the academic and professional community and suitable for undergraduate and postgraduate teaching in Environmental Engineering, Chemical Engineering and Biotechnology. Editors: Faisal I. Hai, University of Wollongong, Australia Kazuo Yamamoto, University of Tokyo, Japan Chung-Hak Lee, Seoul National University, Korea.
Author | : Enrico Drioli |
Publisher | : Royal Society of Chemistry |
Total Pages | : 345 |
Release | : 2011-07-06 |
Genre | : Science |
ISBN | : 1849733481 |
Membranes already have important applications in artificial organs, the processing of biotechnological products, food manufacture, waste water treatment, and seawater desalination. Their uses in gaseous mixture separations are, however, far from achieving their full potential. Separation of air components, natural gas dehumidification and sweeting, separation and recovery of CO2 from biogas, and H2 from refinery gases are all examples of current industrial applications. The use of membranes for reducing the greenhouse effect and improving energy efficiency has also been suggested. New process intensification strategies in the petrochemical industry have opened up another growth area for gas separation membrane systems and membrane reactors. This two volume set presents the state-of-the-art in membrane engineering for the separation of gases. It addresses future developments in carbon capture and utilization, H2 production and purification, and O2/N2 separation. Topics covered include the: applications of membrane gas separation in the petrochemical industry; implementation of membrane processes for post-combustion capture; commercial applications of membranes in gas separations; simulation of membrane systems for CO2 capture; design and development of membrane reactors for industrial applications; Pd-based membranes in hydrogen production; modelling and simulation of membrane reactors for hydrogen production and purification; novel hybrid membrane/pressure swing adsorption process for gas separation; molecular dynamics as a new tool for membrane design, and physical aging of membranes for gas separations. Volume 2 looks at problems combined with membrane reactors.
Author | : Maurizio Benaglia |
Publisher | : John Wiley & Sons |
Total Pages | : 492 |
Release | : 2020-04-06 |
Genre | : Technology & Engineering |
ISBN | : 3527345094 |
A comprehensive resource on techniques and applications for immobilizing catalysts Catalyst Immobilization: Methods and Applications covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis. Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book?s chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. Catalyst Immobilization offers a modern vision and a broad and critical view of this exciting field. This important book: -Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry -Presents various immobilization techniques and applications -Explores new trends, such as 3D printed devices for catalytic systems -Contains information from a leading international team of authors Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, Catalyst Immobilization: Methods and Applications presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond.
Author | : James Spivey |
Publisher | : Royal Society of Chemistry |
Total Pages | : 377 |
Release | : 2019-02-13 |
Genre | : Science |
ISBN | : 1788016971 |
Catalysts are required for a variety of applications and researchers are increasingly challenged to find cost effective and environmentally benign catalysts to use. This volume looks at modern approaches to catalysis and reviews the extensive literature including direct methane conversion, nanocomposite catalysts for transformation of biofuels into syngas and hydrogen, and catalytic wet air oxidation technology for industrial wastewater treatment. Appealing broadly to researchers in academia and industry, it will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Author | : Anirban Roy |
Publisher | : John Wiley & Sons |
Total Pages | : 412 |
Release | : 2020-04-07 |
Genre | : Science |
ISBN | : 1119536065 |
The book Modeling in Membranes and Membrane-Based Processes is based on the idea of developing a reference which will cover most relevant and “state-of-the-art” approaches in membrane modeling. This book explores almost every major aspect of modeling and the techniques applied in membrane separation studies and applications. This includes first principle-based models, thermodynamics models, computational fluid dynamics simulations, molecular dynamics simulations, and artificial intelligence-based modeling for membrane separation processes. These models have been discussed in light of various applications ranging from desalination to gas separation. In addition, this breakthrough new volume covers the fundamentals of polymer membrane pore formation mechanisms, covering not only a wide range of modeling techniques, but also has various facets of membrane-based applications. Thus, this book can be an excellent source for a holistic perspective on membranes in general, as well as a comprehensive and valuable reference work. Whether a veteran engineer in the field or lab or a student in chemical or process engineering, this latest volume in the “Advances in Membrane Processes” is a must-have, along with the first book in the series, Membrane Processes, also available from Wiley-Scrivener.
Author | : Endre Nagy |
Publisher | : Elsevier |
Total Pages | : 342 |
Release | : 2012 |
Genre | : Science |
ISBN | : 0124160255 |
With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation
Author | : Basudeb Saha |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 399 |
Release | : 2015-12-18 |
Genre | : Technology & Engineering |
ISBN | : 3110390124 |
Catalytic Reactors presents several key aspects of reactor design in Chemical and Process Engineering. Starting with the fundamental science across a broad interdisciplinary field, this graduate level textbook offers a concise overview on reactor and process design for students, scientists and practitioners new to the field. This book aims to collate into a comprehensive and well-informed work of leading researchers from north America, western Europe and south-east Asia. The editor and international experts discuss state-of-the-art applications of multifunctional reactors, biocatalytic membrane reactors, micro-flow reactors, industrial catalytic reactors, micro trickle bed reactors and multiphase catalytic reactors. The use of catalytic reactor technology is essential for the economic viability of the chemical manufacturing industry. The importance of Chemical and Process Engineering and efficient design of reactors are another focus of the book. Especially the combination of advantages from both catalysis and chemical reaction technology for optimization and intensification as essential factors in the future development of reactors and processes are discussed. Furthermore, options that can drastically influence reaction processes, e.g. choice of catalysts, alternative reaction pathways, mass and heat transfer effects, flow regimes and inherent design of catalytic reactors are reviewed in detail. Focuses on the state-of-the-art applications of catalytic reactors and optimization in the design and operation of industrial catalytic reactors Insights into transfer of knowledge from laboratory science to industry For students and researchers in Chemical and Mechanical Engineering, Chemistry, Industrial Catalysis and practising Engineers