Surrogate-Based Modeling and Optimization

Surrogate-Based Modeling and Optimization
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
Total Pages: 413
Release: 2013-06-06
Genre: Mathematics
ISBN: 1461475511

Contemporary engineering design is heavily based on computer simulations. Accurate, high-fidelity simulations are used not only for design verification but, even more importantly, to adjust parameters of the system to have it meet given performance requirements. Unfortunately, accurate simulations are often computationally very expensive with evaluation times as long as hours or even days per design, making design automation using conventional methods impractical. These and other problems can be alleviated by the development and employment of so-called surrogates that reliably represent the expensive, simulation-based model of the system or device of interest but they are much more reasonable and analytically tractable. This volume features surrogate-based modeling and optimization techniques, and their applications for solving difficult and computationally expensive engineering design problems. It begins by presenting the basic concepts and formulations of the surrogate-based modeling and optimization paradigm and then discusses relevant modeling techniques, optimization algorithms and design procedures, as well as state-of-the-art developments. The chapters are self-contained with basic concepts and formulations along with applications and examples. The book will be useful to researchers in engineering and mathematics, in particular those who employ computationally heavy simulations in their design work.

Simulation-Based Optimization

Simulation-Based Optimization
Author: Abhijit Gosavi
Publisher: Springer
Total Pages: 530
Release: 2014-10-30
Genre: Business & Economics
ISBN: 1489974911

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Simulation-Driven Modeling and Optimization

Simulation-Driven Modeling and Optimization
Author: Slawomir Koziel
Publisher: Springer
Total Pages: 405
Release: 2016-02-12
Genre: Mathematics
ISBN: 3319275178

This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the efficiency of the simulation-driven design process. High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design—while highly desirable—is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.

Computing Tools for Modeling, Optimization and Simulation

Computing Tools for Modeling, Optimization and Simulation
Author: Manuel Laguna
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 1999-11-30
Genre: Business & Economics
ISBN: 9780792377184

Computing Tools for Modeling, Optimization and Simulation reflects the need for preserving the marriage between operations research and computing in order to create more efficient and powerful software tools in the years ahead. The 17 papers included in this volume were carefully selected to cover a wide range of topics related to the interface between operations research and computer science. The volume includes the now perennial applications of rnetaheuristics (such as genetic algorithms, scatter search, and tabu search) as well as research on global optimization, knowledge management, software rnaintainability and object-oriented modeling. These topics reflect the complexity and variety of the problems that current and future software tools must be capable of tackling. The OR/CS interface is frequently at the core of successful applications and the development of new methodologies, making the research in this book a relevant reference in the future. The editors' goal for this book has been to increase the interest in the interface of computer science and operations research. Both researchers and practitioners will benefit from this book. The tutorial papers may spark the interest of practitioners for developing and applying new techniques to complex problems. In addition, the book includes papers that explore new angles of well-established methods for problems in the area of nonlinear optimization and mixed integer programming, which seasoned researchers in these fields may find fascinating.

Modeling, Simulation, and Optimization

Modeling, Simulation, and Optimization
Author: Pandian Vasant
Publisher: Springer
Total Pages: 133
Release: 2017-12-07
Genre: Technology & Engineering
ISBN: 3319705423

This book features selected contributions in the areas of modeling, simulation, and optimization. The contributors discusses requirements in problem solving for modeling, simulation, and optimization. Modeling, simulation, and optimization have increased in demand in exponential ways and how potential solutions might be reached. They describe how new technologies in computing and engineering have reduced the dimension of data coverage worldwide, and how recent inventions in information and communication technology (ICT) have inched towards reducing the gaps and coverage of domains globally. The chapters cover how the digging of information in a large data and soft-computing techniques have contributed to a strength in prediction and analysis, for decision making in computer science, technology, management, social computing, green computing, and telecom. The book provides an insightful reference to the researchers in the fields of engineering and computer science. Researchers, academics, and professionals will benefit from this volume. Features selected expanded papers in modeling, simulation, and optimization from COMPSE 2016; Includes research into soft computing and its application in engineering and technology; Presents contributions from global experts in academia and industry in modeling, simulation, and optimization.

Antenna Design by Simulation-Driven Optimization

Antenna Design by Simulation-Driven Optimization
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2014-02-12
Genre: Mathematics
ISBN: 3319043676

This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design process. This volume is suitable for electrical engineers in academia as well as industry, antenna designers and engineers dealing with computationally-expensive design problems.

Handbook of Simulation Optimization

Handbook of Simulation Optimization
Author: Michael C Fu
Publisher: Springer
Total Pages: 400
Release: 2014-11-13
Genre: Business & Economics
ISBN: 1493913840

The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.

Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
Total Pages: 657
Release: 2013-08-08
Genre: Computers
ISBN: 0199660336

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Dynamic Mode Decomposition

Dynamic Mode Decomposition
Author: J. Nathan Kutz
Publisher: SIAM
Total Pages: 241
Release: 2016-11-23
Genre: Science
ISBN: 1611974496

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Model Development and Optimization

Model Development and Optimization
Author: V.V. Ivanov
Publisher: Springer Science & Business Media
Total Pages: 260
Release: 2013-11-09
Genre: Science
ISBN: 1461540623

At present, concerning intensive development of computer hardware and software, computer-based methods for modeling of difficult problems have become the main technique for theoretical and applied investigations. Many unsolved tasks for evolutionary systems (ES) are an important class of such problems. ES relate to economic systems on the whole and separate branches and businesses, scientific and art centers, ecological systems, populations, separate species of animals and plants, human organisms, different subsystems of organisms, cells of animals and plants, and soon. Available methods for modeling of complex systems have received considerable attention and led to significant results. No large-scale programs are done without methods of modeling today. Power programs, health programs, cosmos investigations, economy designs, etc. are a few examples of such programs. Nevertheless, in connection with the permanent complication of contemporary problems, existing means are in need of subsequent renovation and perfection. In the monograph, along with analysis of contemporary means, new classes of mathematical models (MM) which can be used for modeling in the most difficult cases are proposed and justified. The main peculiarities of these MM offer possibilities for the description ofES; creation and restoration processes; dynamics of elimination or reservation of obsolete technology in ES; dynamics of resources distribution for fulfillment of internal and external functions ofES; and so on. The complexity of the problems allows us to refer to the theory and applications of these MM as the mathematical theory of development. For simplicity, the title "Model Development and Optimization" was adopted.