Signal Processing With Fractals
Download Signal Processing With Fractals full books in PDF, epub, and Kindle. Read online free Signal Processing With Fractals ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gregory W. Wornell |
Publisher | : Prentice Hall |
Total Pages | : 200 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : |
Fractal geometry and recent developments in wavelet theory are having an important impact on the field of signal processing. Efficient representations for fractal signals based on wavelets are opening up new applications for signal processing, and providing better solutions to problems in existing applications. Signal Processing with Fractals provides a valuable introduction to this new and exciting area, and develops a powerful conceptual foundation for understanding the topic. Practical techniques for synthesizing, analyzing, and processing fractal signals for a wide range of applications are developed in detail, and novel applications in communications are explored.
Author | : Dinesh Kumar |
Publisher | : CRC Press |
Total Pages | : 134 |
Release | : 2017-02-03 |
Genre | : Mathematics |
ISBN | : 1351678388 |
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Author | : Palle E. T. Jorgensen |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2007-10-17 |
Genre | : Mathematics |
ISBN | : 0387330828 |
Combines analysis and tools from probability, harmonic analysis, operator theory, and engineering (signal/image processing) Interdisciplinary focus with hands-on approach, generous motivation and new pedagogical techniques Numerous exercises reinforce fundamental concepts and hone computational skills Separate sections explain engineering terms to mathematicians and operator theory to engineers Fills a gap in the literature
Author | : Marwan Al-Akaidi |
Publisher | : Cambridge University Press |
Total Pages | : 0 |
Release | : 2004-05-20 |
Genre | : Technology & Engineering |
ISBN | : 9780521814584 |
This volume offers the results of research carried out to develop novel fractal-based techniques for the analysis of speech and audio signals. A great deal of this work is currently finding its way into practical commercial applications with Nokia Communications and other key organizations. After an introduction to speech processing and fractal geometry, fractal techniques are described in detail with numerous applications and examples. A final chapter summarizes the advantages and potential of the new techniques.
Author | : Santo Banerjee |
Publisher | : Springer Nature |
Total Pages | : 132 |
Release | : 2020-12-14 |
Genre | : Science |
ISBN | : 3030626725 |
This book introduces the fractal interpolation functions (FIFs) in approximation theory to the readers and the concerned researchers in advanced level. FIFs can be used to precisely reconstruct the naturally occurring functions when compared with the classical interpolants. The book focuses on the construction of fractals in metric space through various iterated function systems. It begins by providing the Mathematical background behind the fractal interpolation functions with its graphical representations and then introduces the fractional integral and fractional derivative on fractal functions in various scenarios. Further, the existence of the fractal interpolation function with the countable iterated function system is demonstrated by taking suitable monotone and bounded sequences. It also covers the dimension of fractal functions and investigates the relationship between the fractal dimension and the fractional order of fractal interpolation functions. Moreover, this book explores the idea of fractal interpolation in the reconstruction scheme of illustrative waveforms and discusses the problems of identification of the characterizing parameters. In the application section, this research compendium addresses the signal processing and its Mathematical methodologies. A wavelet-based denoising method for the recovery of electroencephalogram (EEG) signals contaminated by nonstationary noises is presented, and the author investigates the recognition of healthy, epileptic EEG and cardiac ECG signals using multifractal measures. This book is intended for professionals in the field of Mathematics, Physics and Computer Science, helping them broaden their understanding of fractal functions and dimensions, while also providing the illustrative experimental applications for researchers in biomedicine and neuroscience.
Author | : Michael Fielding Barnsley |
Publisher | : Cambridge University Press |
Total Pages | : 464 |
Release | : 2006-09-07 |
Genre | : Computers |
ISBN | : 0521844932 |
SuperFractals, first published in 2006, describes mathematics and algorithms for the first time in book form, with breathtaking colour pictures.
Author | : Stephane Mallat |
Publisher | : Elsevier |
Total Pages | : 663 |
Release | : 1999-09-14 |
Genre | : Computers |
ISBN | : 0080520839 |
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Author | : E. Chandrasekhar |
Publisher | : Taylor & Francis |
Total Pages | : 306 |
Release | : 2013-11-20 |
Genre | : Science |
ISBN | : 146655360X |
The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications w
Author | : John Semmlow |
Publisher | : Academic Press |
Total Pages | : 784 |
Release | : 2017-12-07 |
Genre | : Technology & Engineering |
ISBN | : 0128096268 |
Circuits, Signals and Systems for Bioengineers: A MATLAB-Based Introduction, Third Edition, guides the reader through the electrical engineering principles that can be applied to biological systems. It details the basic engineering concepts that underlie biomedical systems, medical devices, biocontrol and biomedical signal analysis, providing a solid foundation for students in important bioengineering concepts. Fully revised and updated to better meet the needs of instructors and students, the third edition introduces and develops concepts through computational methods that allow students to explore operations, such as correlations, convolution, the Fourier transform and the transfer function. New chapters have been added on image analysis, noise, stochastic processes and ergodicity, and new medical examples and applications are included throughout the text. - Covers current applications in biocontrol, with examples from physiological systems modeling, such as the respiratory system - Includes revised material throughout, with improved clarity of presentation and more biological, physiological and medical examples and applications - Includes a new chapter on noise, stochastic processes, non-stationary and ergodicity - Includes a separate new chapter featuring expanded coverage of image analysis - Includes support materials, such as solutions, lecture slides, MATLAB data and functions needed to solve the problems
Author | : Bruce West |
Publisher | : Springer Science & Business Media |
Total Pages | : 355 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 0387217460 |
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.