Signal Processing And Machine Learning For Statistical Arbitrage In Finance
Download Signal Processing And Machine Learning For Statistical Arbitrage In Finance full books in PDF, epub, and Kindle. Read online free Signal Processing And Machine Learning For Statistical Arbitrage In Finance ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ali N. Akansu |
Publisher | : John Wiley & Sons |
Total Pages | : 312 |
Release | : 2016-04-21 |
Genre | : Technology & Engineering |
ISBN | : 1118745639 |
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Author | : Ali N. Akansu |
Publisher | : John Wiley & Sons |
Total Pages | : 324 |
Release | : 2016-05-31 |
Genre | : Technology & Engineering |
ISBN | : 1118745671 |
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Author | : Andrew Pole |
Publisher | : John Wiley & Sons |
Total Pages | : 230 |
Release | : 2011-07-07 |
Genre | : Business & Economics |
ISBN | : 1118160738 |
While statistical arbitrage has faced some tough times?as markets experienced dramatic changes in dynamics beginning in 2000?new developments in algorithmic trading have allowed it to rise from the ashes of that fire. Based on the results of author Andrew Pole?s own research and experience running a statistical arbitrage hedge fund for eight years?in partnership with a group whose own history stretches back to the dawn of what was first called pairs trading?this unique guide provides detailed insights into the nuances of a proven investment strategy. Filled with in-depth insights and expert advice, Statistical Arbitrage contains comprehensive analysis that will appeal to both investors looking for an overview of this discipline, as well as quants looking for critical insights into modeling, risk management, and implementation of the strategy.
Author | : Stefan Jansen |
Publisher | : Packt Publishing Ltd |
Total Pages | : 822 |
Release | : 2020-07-31 |
Genre | : Business & Economics |
ISBN | : 1839216786 |
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Author | : Álvaro Cartea |
Publisher | : Cambridge University Press |
Total Pages | : 360 |
Release | : 2015-08-06 |
Genre | : Mathematics |
ISBN | : 1316453650 |
The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and financial economics, taking the reader from basic ideas to cutting-edge research and practice. If you need to understand how modern electronic markets operate, what information provides a trading edge, and how other market participants may affect the profitability of the algorithms, then this is the book for you.
Author | : Yiyong Feng |
Publisher | : |
Total Pages | : 231 |
Release | : 2016 |
Genre | : Adaptive signal processing |
ISBN | : 9781680831191 |
Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation.
Author | : Ali N. Akansu |
Publisher | : Academic Press |
Total Pages | : 156 |
Release | : 2015-03-25 |
Genre | : Technology & Engineering |
ISBN | : 0128017503 |
This book bridges the fields of finance, mathematical finance and engineering, and is suitable for engineers and computer scientists who are looking to apply engineering principles to financial markets. The book builds from the fundamentals, with the help of simple examples, clearly explaining the concepts to the level needed by an engineer, while showing their practical significance. Topics covered include an in depth examination of market microstructure and trading, a detailed explanation of High Frequency Trading and the 2010 Flash Crash, risk analysis and management, popular trading strategies and their characteristics, and High Performance DSP and Financial Computing. The book has many examples to explain financial concepts, and the presentation is enhanced with the visual representation of relevant market data. It provides relevant MATLAB codes for readers to further their study. Please visit the companion website on http://booksite.elsevier.com/9780128015612/ - Provides engineering perspective to financial problems - In depth coverage of market microstructure - Detailed explanation of High Frequency Trading and 2010 Flash Crash - Explores risk analysis and management - Covers high performance DSP & financial computing
Author | : Dr. Hemant N. Patel |
Publisher | : Xoffencerpublication |
Total Pages | : 224 |
Release | : 2023-07-17 |
Genre | : Computers |
ISBN | : 8119534026 |
In order to tackle the computer challenge, we will need an algorithm. A collection of instructions that must be carried out in order to transform an input into an outcome is referred to as an algorithm. One illustration of this would be the development of an algorithm to produce a classification. Your ordered list is the result, and the input is a series of numerical values to be arranged. You might be interested in discovering the most effective algorithm, which either needs fewer instructions or less memory or both, and you might discover that there are numerous algorithms for the same work. On the other hand, we do not have an algorithm for certain tasks, such as determining what constitutes spam and what constitutes legitimate e-mail. We are aware of the nature of the entry, which is a simple typeface file contained within an email document. We are aware of the expected outcome, which is a yes/no answer signifying whether or not the communication should be considered spam. We are not familiar with the process of converting information to output. The definition of what constitutes spam shifts over time and differs from one individual to the next. Using statistics, we are able to compensate for our dearth of understanding. We are able to quickly collect thousands of example messages, some of which we are aware are spam and would like to "learn" more about how they are constructed. Therefore, we would like the computer (machine) to automatically determine the procedure that should be used for this work. There is no need for you to learn how to arrange numbers because we already have algorithms for that; however, there are many applications with example data that do not require an algorithm. Because of developments in computer technology, we are now able to store and analyze large quantities of data, as well as retrieve this data from geographically dispersed locations through the use of a computer network. Most data acquisition instruments today are computerized and capture accurate data.
Author | : Cheng Few Lee |
Publisher | : World Scientific |
Total Pages | : 5053 |
Release | : 2020-07-30 |
Genre | : Business & Economics |
ISBN | : 9811202400 |
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Author | : Ganapathy Vidyamurthy |
Publisher | : John Wiley & Sons |
Total Pages | : 295 |
Release | : 2011-02-02 |
Genre | : Business & Economics |
ISBN | : 111804570X |
The first in-depth analysis of pairs trading Pairs trading is a market-neutral strategy in its most simple form. The strategy involves being long (or bullish) one asset and short (or bearish) another. If properly performed, the investor will gain if the market rises or falls. Pairs Trading reveals the secrets of this rigorous quantitative analysis program to provide individuals and investment houses with the tools they need to successfully implement and profit from this proven trading methodology. Pairs Trading contains specific and tested formulas for identifying and investing in pairs, and answers important questions such as what ratio should be used to construct the pairs properly. Ganapathy Vidyamurthy (Stamford, CT) is currently a quantitative software analyst and developer at a major New York City hedge fund.