Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 60
Release: 2018-07-10
Genre:
ISBN: 9781722736873

Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition. Rogers, James C. and Dai, Renshou Ames Research Center...

Acoustic Measurements from a Rotor Blade-vortex Interaction Noise Experiment in the German-Dutch Wind Tunnel (DNW)

Acoustic Measurements from a Rotor Blade-vortex Interaction Noise Experiment in the German-Dutch Wind Tunnel (DNW)
Author: Ruth McVoy Martin
Publisher:
Total Pages: 188
Release: 1988
Genre: Rotors (Helicopters)
ISBN:

Acoustic data are presented from a 40-percent-scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aeroacoustic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals are presented.

Extraction of Blade-vortex Interactions from Helicopter Transient Maneuvering Noise

Extraction of Blade-vortex Interactions from Helicopter Transient Maneuvering Noise
Author: James Harold Stephenson
Publisher:
Total Pages: 440
Release: 2014
Genre:
ISBN:

Time-frequency analysis techniques are proposed as a necessary tool for the analysis of acoustics generated by helicopter transient maneuvering flight. Such techniques are necessary as the acoustic signals related to transient maneuvers are inherently unsteady. The wavelet transform is proposed as an appropriate tool, and it is compared to the more standard short-time Fourier transform technique through an investigation using several appropriately sized interrogation windows. It is shown that the wavelet transform provides a consistent spectral representation, regardless of employed window size. The short-time Fourier transform, however, provides spectral amplitudes that are highly dependent on the size of the interrogation window, and so is not an appropriate tool for this situation. An extraction method is also proposed to investigate blade-vortex interaction noise emitted during helicopter transient maneuvering flight. The extraction method allows for the investigation of blade-vortex interactions independent of other sound sources. The method is based on filtering the spectral data calculated through the wavelet transform technique. The filter identifies blade-vortex interactions through their high amplitude, high frequency impulsive content. The filtered wavelet coefficients are then inverse transformed to create a pressure signature solely related to blade-vortex interactions. This extraction technique, along with a prescribed wake model, is applied to experimental data extracted from three separate flight maneuvers performed by a Bell 430 helicopter. The maneuvers investigated include a steady level flight, fast- and medium-speed advancing side roll maneuvers. A sensitivity analysis is performed in order to determine the optimal tuning parameters employed by the filtering technique. For the cases studied, the optimized tuning parameters were shown to be frequencies above 7 main rotor harmonics, and amplitudes stronger than 25% (-6 dB) of the energy in the main rotor harmonic. Further, it is shown that blade-vortex interactions can be accurately extracted so long as the blade-vortex interaction peak energy signal is greater or equal to the energy in the main rotor harmonic. An in-depth investigation of the changes in the blade-vortex interaction signal during transient advancing side roll maneuvers is then conducted. It is shown that the sound pressure level related to blade-vortex interactions, shifts from the advancing side, to the retreating side of the vehicle during roll entry. This shift is predicted adequately by the prescribed wake model. However, the prescribed wake model is shown to be inadequate for the prediction of blade-vortex interaction miss distance, as it does not respond to the roll rate of the vehicle. It is further shown that the sound pressure levels are positively linked to the roll rate of the vehicle. Similar sound pressure level directivities and amplitudes can be seen when vehicle roll rates are comparable. The extraction method is shown to perform admirably throughout each maneuver. One limitation with the technique is identified, and a proposal to mitigate its effects is made. The limitation occurs when the main rotor harmonic energy drops below an arbitrary threshold. When this happens, a decreased spectral amplitude is required for filtering; which leads to the extraction of high frequency noise unrelated to blade-vortex interactions. It is shown, however, that this occurs only when there are no blade-vortex interactions present. Further, the resulting sound pressure level is identifiable as it is significantly less than the peak blade-vortex interaction sound pressure level. Thus the effects of this limitation are shown to be negligible.

Helicopter Blade-vortex Interaction Locations: Scale-model Acoustics and Free-wake Analysis Results

Helicopter Blade-vortex Interaction Locations: Scale-model Acoustics and Free-wake Analysis Results
Author: Danny R. Hoad
Publisher:
Total Pages: 112
Release: 1987
Genre:
ISBN:

The results of a model rotor acoustic test in the Langley 4- by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses. Keywords; Helicopter rotor disks; Free wake; Blade-vortex interactions; Acoustic properties.

New Computational Methods for the Prediction and Analysis of Helicopter Noise

New Computational Methods for the Prediction and Analysis of Helicopter Noise
Author: Roger C. Strawn
Publisher:
Total Pages: 18
Release: 1996
Genre: Fluid dynamics
ISBN:

Abstract: "This paper describes several new methods to predict and analyze rotorcraft noise. These methods are: 1) a combined computational fluid dynamics and Kirchhoff scheme for far-field noise predictions, 2) parallel computer implementation of the Kirchhoff integrations, 3) audio and visual rendering of the computed acoustic predictions over large far-field regions, and 4) acoustic tracebacks to the Kirchhoff surface to pinpoint the sources of the rotor noise. The paper describes each method and presents sample results for three test cases. The first case consists of in-plane high-speed impulsive noise and the other two cases show idealized parallel and oblique blade-vortex interactions. The computed results show good agreement with available experimental data but convey much more information about the far-field noise propagation. When taken together, these new analysis methods exploit the power of new computer technologies and offer the potential to significantly improve our prediction and understanding of rotorcraft noise."

Helicopter Impulsive Noise: Theoretical and Experimental Status

Helicopter Impulsive Noise: Theoretical and Experimental Status
Author: F. H. Schmitz
Publisher:
Total Pages: 110
Release: 1983
Genre:
ISBN:

The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanisms is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanisms of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.