Silicon Polymers

Silicon Polymers
Author: Aziz M. Muzafarov
Publisher: Springer Science & Business Media
Total Pages: 242
Release: 2010-09-22
Genre: Technology & Engineering
ISBN: 3642160476

Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials?, by A. Feigl, A. Bockholt, J. Weis, and B. Rieger; * Conjugated Organosilicon Materials for Organic Electronics and Photonics, by Sergei A. Ponomarenko and Stephan Kirchmeyer; * Polycarbosilanes Based on Silicon-Carbon Cyclic Monomers, by E.Sh. Finkelshtein, N.V. Ushakov, and M.L. Gringolts; * New Synthetic Strategies for Structured Silicones Using B(C6F5)3, by Michael A. Brook, John B. Grande, and François Ganachaud; * Polyhedral Oligomeric Silsesquioxanes with Controlled Structure: Formation and Application in New Si-Based Polymer Systems, by Yusuke Kawakami, Yuriko Kakihana, Akio Miyazato, Seiji Tateyama, and Md. Asadul Hoque;

IRON—Binary Phase Diagrams

IRON—Binary Phase Diagrams
Author: O. Kubaschewski
Publisher: Springer Science & Business Media
Total Pages: 194
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 3662080249

At the official dinner of a· meeting in May 1939, I was seated next to Max Hansen. When I congratulated him on the well deserved success of his "Aufbau der Zweistoff-Legierungen", he smiled: "yes, it was a struggle with the hydra, and so it has taken me seven years", meaning that whenever he had thought to have finished the phase diagram of a particular system, new evidence would turn up like the new heads of the Greek monster. There is no need to point out the importance of assessed phase diagrams to metallurgists or even anyone concerned with the technology and applica tion of metals and alloys. The information contained therein is fundamental to considerations concerning the chemical, physical and mechanical properties of alloys. Hansen's German monograph was followed by a revised English edition in 1958 with K. Anderko and the supplements by R.P. Elliott (1965) and F.A. Shunk (1969). All those who have made use of these volumes will admit that much diligent labour has gone into this work, necessary to cope with the ever increasing number of publications and the consequent improvements.

Efficient Methods for Preparing Silicon Compounds

Efficient Methods for Preparing Silicon Compounds
Author: Herbert W Roesky
Publisher: Academic Press
Total Pages: 540
Release: 2016-05-12
Genre: Science
ISBN: 0128035684

Efficient Methods for Preparing Silicon Compounds is a unique and valuable handbook for chemists and students involved in advanced studies of preparative chemistry in academia and industry. Organized by the various coordination numbers (from two to six) of the central silicon atom of the reported compounds, this book provides researchers with a handy and immediate reference for any compound or properties needed in the area. Edited by a renowned expert in the field, each chapter explores a different type of compound, thoroughly illustrated with useful schemes and supplemented by additional references. Knowledgeable contributors report on a broad range of compounds on which they have published and which are already used on a broad scale or have the potential to be used in the very near future to develop a new field of research or application in silicon chemistry. - Includes contributions and edits from leading experts in the field - Includes detailed chemical schemes and useful references for each preparative method - Organized by the coordination numbers of the central silicon atom for each compound for easy navigation - Serves as a go-to primer for researchers in novel compositions of silicon matter

SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices

SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices
Author: John D. Cressler
Publisher: CRC Press
Total Pages: 373
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1351834797

What seems routine today was not always so. The field of Si-based heterostructures rests solidly on the shoulders of materials scientists and crystal growers, those purveyors of the semiconductor “black arts” associated with the deposition of pristine films of nanoscale dimensionality onto enormous Si wafers with near infinite precision. We can now grow near-defect free, nanoscale films of Si and SiGe strained-layer epitaxy compatible with conventional high-volume silicon integrated circuit manufacturing. SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices tells the materials side of the story and details the many advances in the Si-SiGe strained-layer epitaxy for device applications. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume defines and details the many advances in the Si/SiGe strained-layer epitaxy for device applications. Mining the talents of an international panel of experts, the book covers modern SiGe epitaxial growth techniques, epi defects and dopant diffusion in thin films, stability constraints, and electronic properties of SiGe, strained Si, and Si-C alloys. It includes appendices on topics such as the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.

Silicon Micromachining

Silicon Micromachining
Author: Miko Elwenspoek
Publisher: Cambridge University Press
Total Pages: 424
Release: 2004-08-19
Genre: Art
ISBN: 9780521607674

A comprehensive overview of the key techniques used in the fabrication of micron-scale structures in silicon; for graduate students and researchers.

Porous Silicon

Porous Silicon
Author: Zhe Chuan Feng
Publisher: World Scientific
Total Pages: 496
Release: 1994
Genre: Science
ISBN: 9789810216344

Due to the recent discovery of the room-temperature visible light emission from porous silicon (P-Si), a great interest in P-Si and related materials has arisen in the last decade of the 20th century. Crystalline (c-) Si, at the heart of integrated circuits, has an indirect band gap of 1.1 eV, which limits its application in optoelectronics. The visible light emitting P-Si may open a new field combining Si integrated technology and optoelectronics. This book is a comprehensive review of the recent research and development of porous silicon. Strong visible photoluminescence (PL) and electroluminescence (EL) from P-Si and other forms of silicon nanocrystallites (nc-Si) are reviewed. Several proposed mechanisms for the PL from porous silicon such as quantum confinement, amorphicity and molecular PL are studied. The following issues are covered: mechanisms for the visible light emission, physical structures, studies of the PL and EL, correlation of structure and optical studies, surface physics and chemistry, relationships among various forms (P-Si, a-Si, µc-Si), device applications, future developments.

Silicon in Agriculture

Silicon in Agriculture
Author: L.E. Datnoff
Publisher: Elsevier
Total Pages: 425
Release: 2001-04-11
Genre: Technology & Engineering
ISBN: 0080541224

Presenting the first book to focus on the importance of silicon for plant health and soil productivity and on our current understanding of this element as it relates to agriculture.Long considered by plant physiologists as a non-essential element, or plant nutrient, silicon was the center of attention at the first international conference on Silicon in Agriculture, held in Florida in 1999.Ninety scientists, growers, and producers of silicon fertilizer from 19 countries pondered a paradox in plant biology and crop science. They considered the element Si, second only to oxygen in quantity in soils, and absorbed by many plants in amounts roughly equivalent to those of such nutrients as sulfur or magnesium. Some species, including such staples as rice, may contain this element in amounts as great as or even greater than any other inorganic constituent. Compilations of the mineral composition of plants, however, and much of the plant physiological literature largely ignore this element. The participants in Silicon in Agriculture explored that extraordinary discrepancy between the silicon content of plants and that of the plant research enterprise.The participants, all of whom are active in agricultural science, with an emphasis on crop production, presented, and were presented with, a wealth of evidence that silicon plays a multitude of functions in the real world of plant life. Many soils in the humid tropics are low in plant available silicon, and the same condition holds in warm to hot humid areas elsewhere. Field experience, and experimentation even with nutrient solutions, reveals a multitude of functions of silicon in plant life. Resistance to disease is one, toleration of toxic metals such as aluminum, another. Silicon applications often minimize lodging of cereals (leaning over or even becoming prostrate), and often cause leaves to assume orientations more favorable for light interception. For some crops, rice and sugarcane in particular, spectacular yield responses to silicon application have been obtained. More recently, other crop species including orchids, daisies and yucca were reported to respond to silicon accumulation and plant growth/disease control. The culture solutions used for the hydroponic production of high-priced crops such as cucumbers and roses in many areas (The Netherlands for example) routinely included silicon, mainly for disease control. The biochemistry of silicon in plant cell walls, where most of it is located, is coming increasingly under scrutiny; the element may act as a crosslinking element between carbohydrate polymers.There is an increased conviction among scientists that the time is at hand to stop treating silicon as a plant biological nonentity. The element exists, and it matters.