Short-time Stability in Linear Time-varying Systems

Short-time Stability in Linear Time-varying Systems
Author: Peter Dorato
Publisher:
Total Pages: 156
Release: 1961
Genre: Stability
ISBN:

The concept of short-time stability finds application in missile and satellite systems where operating times are often of finite duration. Short-time stability assures, in a finite time interval, that all inputs bounded by a prescribed constant Greek epsilon result in outputs bounded by a second prescribed constant. The study of short-time stability is divided into two categories: undriven systems and driven systems. Undriven systems are represented by a set of differential equations. Sufficient conditions for short-time stability are given in terms of the coefficients. Driven systems are represented by their impulse response. A necessary and sufficient condition for short-time stability in driven systems is given directly in terms of impulse response. Sufficient conditions for short-time stability in feedback systems, in terms of the open loop impulse response are also included. In addition the concept of shorttime C-equivalence, essentially a structural stability concept, is introduced. Necessary and sufficient conditions for two systems to be short-time C-equivalent are presented. (Author).

Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach
Author: Francesco Amato
Publisher: John Wiley & Sons
Total Pages: 184
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 1119140528

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Analysis of Periodically Time-Varying Systems

Analysis of Periodically Time-Varying Systems
Author: John A. Richards
Publisher: Springer Science & Business Media
Total Pages: 186
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642818730

Many of the practical techniques developed for treating systems described by periodic differential equations have arisen in different fields of application; con sequently some procedures have not always been known to workers in areas that might benefit substantially from them. Furthermore, recent analytical methods are computationally based so that it now seems an opportune time for an applications-oriented book to be made available that, in a sense, bridges the fields in which equations with periodic coefficients arise and which draws together analytical methods that are implemented readily. This book seeks to ftll that role, from a user's and not a theoretician's view. The complexities of periodic systems often demand a computational approach. Matrix treatments therefore are emphasized here although algebraic methods have been included where they are useful in their own right or where they establish properties that can be exploited by the matrix approach. The matrix development given calls upon the nomenclature and treatment of H. D'Angelo, Linear Time Varying Systems: Analysis and Synthesis (Boston: Allyn and Bacon 1970) which deals with time-varying systems in general. It is recommended for its modernity and comprehensive approach to systems analysis by matrix methods. Since the present work is applications-oriented no attempt has been made to be complete theoretically by way of presenting all proofs, existence theorems and so on. These can be found in D'Angelo and classic and well-developed treatises such as McLachlan, N. W. : Theory and application of Mathieu functions.

Current Trends in Nonlinear Systems and Control

Current Trends in Nonlinear Systems and Control
Author: Petar V. Kokotović
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2006
Genre: Language Arts & Disciplines
ISBN: 9780817643836

This volume is an outgrowth of the workshop "Applications of Advanced Control Theory to Robotics and Automation," organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore Nicosia. Both Petar and Turi have carried out distinguished work in the control community, and have long been recognized as mentors as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments.Main topics covered include:* Observer design for time-delay systems, nonlinear systems, and identification for different classes of systems* Lyapunov tools for linear differential inclusions, control of constrained systems, and finite-time stability concepts* New studies of robot manipulators, parameter identification, and different control problems for mobile robots* Applications of modern control techniques to port-controlled Hamiltonian systems, different classes of vehicles, and web handling systems* Applications of the max-plus algebra to system-order reduction; optimal machine scheduling problems; and inventory control with cooperation between retailers* Control of linear and nonlinear networked control systems: deterministic and stochastic approachesThe scope of the work is very broad, and although each chapter is self-contained, the book has been organized into thematically related chapters, which in some cases suggest to the reader a convenient reading sequence. The great variety of topics covered and the almost tutorial writing style used by many of the authors will make this book suitable for experts, as well as young researchers who seek a more intuitive understanding of these relevant topics in the field.

Discrete-Time Markov Jump Linear Systems

Discrete-Time Markov Jump Linear Systems
Author: O.L.V. Costa
Publisher: Springer Science & Business Media
Total Pages: 287
Release: 2006-03-30
Genre: Mathematics
ISBN: 1846280826

This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time

Current Trends in Nonlinear Systems and Control

Current Trends in Nonlinear Systems and Control
Author: Laura Menini
Publisher: Springer Science & Business Media
Total Pages: 557
Release: 2006-09-13
Genre: Technology & Engineering
ISBN: 0817644709

This volume is an outgrowth of the workshop "Applications of Advanced Control Theory to Robotics and Automation, "organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore (Turi) Nicosia. Both Petar and Turi have carried out distinguished work in the control community and have long been recognized as mentors, as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments. The scope of the work is very broad, and although each chapter is self-contained, the book has been organized into thematically related chapters, which in some cases, suggest to the reader a convenient reading sequence. The great variety of topics covered and the almost tutorial writing style used by many of the authors will make this book suitable for both experts in the control field and young researchers who seek a more intuitive understanding of these relevant topics in the field.

Stability, Control, and Computation for Time-Delay Systems

Stability, Control, and Computation for Time-Delay Systems
Author: Wim Michiels
Publisher: SIAM
Total Pages: 443
Release: 2014-12-11
Genre: Mathematics
ISBN: 1611973627

Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems.? In this revised edition, the authors make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book?s focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.?