Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
Total Pages: 481
Release: 2011-09-12
Genre: Technology & Engineering
ISBN: 1139498649

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
Total Pages: 480
Release: 2014-03-06
Genre: Technology & Engineering
ISBN: 9781107646537

Shock Wave/Boundary Layer Interaction (SBLI) is a fundamental phenomenon in gasdynamics and frequently a defining feature in high speed aerodynamic flowfields. The interactions can be found in practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLI's have the potential to pose serious problems and is thus a critical issue for aerospace applications. This is the first book devoted solely to a comprehensive, state of the art explanation of the phenomenon with coverage of all flow regimes where SBLI's occur. The book includes contributions from leading international experts who share their insight into SBLI physics and the impact of these interactions on practical flow situations. This book is aimed at practitioners and graduate students in aerodynamics who wish to familiarise themselves with all aspects of SBLI flows. It is a valuable resource for the specialist because it gathers experimental, computational and theoretical knowledge in one place.

Hypersonic and High Temperature Gas Dynamics

Hypersonic and High Temperature Gas Dynamics
Author: John David Anderson
Publisher: AIAA
Total Pages: 710
Release: 1989
Genre: Science
ISBN: 9781563474590

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.

Basics of Aerothermodynamics

Basics of Aerothermodynamics
Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 3540265198

The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.

Turbulent Shear Layers in Supersonic Flow

Turbulent Shear Layers in Supersonic Flow
Author: Alexander J. Smits
Publisher: Springer Science & Business Media
Total Pages: 418
Release: 2006-05-11
Genre: Science
ISBN: 0387263055

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

Advances in Mechanical Engineering

Advances in Mechanical Engineering
Author: Vilas R. Kalamkar
Publisher: Springer Nature
Total Pages: 803
Release: 2020-06-29
Genre: Technology & Engineering
ISBN: 9811536392

This book presents select peer-reviewed proceedings of the International Conference on Advances in Mechanical Engineering (ICAME 2020). The contents cover latest research in several areas such as advanced energy sources, automation, mechatronics and robotics, automobiles, biomedical engineering, CAD/CAM, CFD, advanced engineering materials, mechanical design, heat and mass transfer, manufacturing and production processes, tribology and wear, surface engineering, ergonomics and human factors, artificial intelligence, and supply chain management. The book brings together advancements happening in the different domains of mechanical engineering, and hence, this will be useful for students and researchers working in mechanical engineering.

Contributions to the Development of Gasdynamics

Contributions to the Development of Gasdynamics
Author: Klaus Oswatitsch
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2012-12-06
Genre: Science
ISBN: 3322910822

Ever since airplane speeds started to approach the speed of sound, the study of compressible flow problems attracted much talent and support in the major indus trialized countries. Today, gas dynamics is a mature branch of science whose many aspects and applications are much too numerous to be mastered by a single person or to be described in a few volumes. This book commemorates the 70th birthday of a great pioneer and teacher of gas dynamics, Dr. Klaus Oswatitsch, Professor of Fluid Mechanics at the Technical University of Vienna and former Director of the Institute for Theoretical Gas Dyna mics, Deutsche Forschungs-und Versuchsanstalt fUr Luft-und Raumfahrt. Several reasons motivated us to prepare an English translation of Oswatitsch's selected sci entific papers. First, we hope that a book containing his major papers will be wel come as a valuable reference text in gas dynamics. Oswatitsch's work is frequently used in the literature in one form or another, but it is usually quite time-consuming for the English speaking reader to consult the original texts. As a result, reference to and understanding of his papers is often incomplete. For example, Oswatitsch's formulation of the equivalence rule hardly ever is quoted in recent textbooks, al though it preceded declassification of Whitcomb's results by several years. Further more, his papers contain much information, which has not yet been fully appreciated in the Anglo-American literature.

31st International Symposium on Shock Waves 1

31st International Symposium on Shock Waves 1
Author: Akihiro Sasoh
Publisher: Springer
Total Pages: 1188
Release: 2019-03-21
Genre: Technology & Engineering
ISBN: 3319910205

This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.

Hypersonic Flow Theory

Hypersonic Flow Theory
Author: Wallace Hayes
Publisher: Elsevier
Total Pages: 481
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 032314876X

Hypersonic Flow Theory presents the fundamentals of fluid mechanics, focusing on the hypersonic flow theory and approaches in theoretical aerodynamics. This book discusses the assumptions underlying hypersonic flow theory, unified supersonic-hypersonic similitude, two-dimensional and axisymmetric bodies, and circular cylinder. The constant-streamtube-area approximation, streamtube-continuity methods, and tangent-wedge and tangent-cone are also deliberated. This text likewise covers the similar laminar boundary layer solutions, bluntness induced interactions on slender bodies, and free molecule transfer theory. The dynamics of hypersonic flight or hypersonic wing theory, magnetohydrodynamic theory, or any developments involving treatment of the Boltzmann equation are not included. This publication is intended for hypersonic aerodynamicists, students, and researchers conducting work on the hypersonic flow phenomena.