Plasma Physics

Plasma Physics
Author: Richard Fitzpatrick
Publisher: CRC Press
Total Pages: 378
Release: 2022-12-13
Genre: Science
ISBN: 1000809854

Encompasses the Lectured Works of a Renowned Expert in the Field Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This textbook provides a concise and cohesive introduction to plasma physics theory and offers a solid foundation for students of physics wishing to take higher level courses in plasma physics. Mathematically Rigorous, but Driven by Physics The author provides an in-depth discussion of the various fluid theories typically used in plasma physics, presenting non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. This second edition has been fully updated to include new content on collisions and magnetic reconnection. It contains over 80 exercises—carefully selected for their pedagogical value—with fully worked out solutions available in a separate solutions manual for professors. The material presents a number of applications, and works through specific topics including basic plasma parameters, the theory of charged particle motion in inhomogeneous electromagnetic fields, collisions, plasma fluid theory, electromagnetic waves in cold plasmas, electromagnetic wave propagation through inhomogeneous plasmas, kinetic theory, magnetohydrodynamical fluid theory, and magnetic reconnection.

The Framework Of Plasma Physics

The Framework Of Plasma Physics
Author: Richard D. Hazeltine
Publisher: CRC Press
Total Pages: 343
Release: 2018-03-08
Genre: Science
ISBN: 0429971354

This book provides an excellent introduction to the fundamental physics of plasmas, which comprise most of the matter in the universe. It is based on lectures that were used for an introductory plasma course at the graduate level.

Energetic Particles in Tokamak Plasmas

Energetic Particles in Tokamak Plasmas
Author: Sergei Sharapov
Publisher: CRC Press
Total Pages: 156
Release: 2021-04-02
Genre: Science
ISBN: 1351002813

The study of energetic particles in magnetic fusion plasmas is key to the development of next-generation "burning" plasma fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Power Station (DEMO). This book provides a comprehensive introduction and analysis of the experimental data on how fast ions behave in fusion-grade plasmas, featuring the latest ground-breaking results from world-leading machines such as the Joint European Torus (JET) and the Mega Ampere Spherical Tokamak (MAST). It also details Alfvenic instabilities, driven by energetic ions, which can cause enhanced transport of energetic ions. MHD spectroscopy of plasma via observed Alfvenic waves called "Alfvén spectroscopy" is introduced and several applications are presented. This book will be of interest to graduate students, researchers, and academics studying fusion plasma physics. Features: Provides a comprehensive overview of the field in one cohesive text, with the main physics phenomena explained qualitatively first. Authored by an authority in the field, who draws on his extensive experience of working with energetic particles in tokamak plasmas. Is suitable for extrapolating energetic particle phenomena in fusion to other plasma types, such as solar and space plasmas.

Electric Potential in Toroidal Plasmas

Electric Potential in Toroidal Plasmas
Author: A.V. Melnikov
Publisher: Springer
Total Pages: 253
Release: 2019-03-20
Genre: Science
ISBN: 303003481X

This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L–H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfvén Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.