Sequential Methods and Their Applications

Sequential Methods and Their Applications
Author: Nitis Mukhopadhyay
Publisher: CRC Press
Total Pages: 512
Release: 2008-10-28
Genre: Mathematics
ISBN: 1420010026

Interactively Run Simulations and Experiment with Real or Simulated Data to Make Sequential Analysis Come AliveTaking an accessible, nonmathematical approach to this field, Sequential Methods and Their Applications illustrates the efficiency of sequential methodologies when dealing with contemporary statistical challenges in many areas.The book fir

Group Sequential Methods with Applications to Clinical Trials

Group Sequential Methods with Applications to Clinical Trials
Author: Christopher Jennison
Publisher: CRC Press
Total Pages: 416
Release: 1999-09-15
Genre: Mathematics
ISBN: 9781584888581

Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion. Group Sequential Methods with Applications to Clinical Trials describes group sequential stopping rules designed to reduce average study length and control Type I and II error probabilities. The authors present one-sided and two-sided tests, introduce several families of group sequential tests, and explain how to choose the most appropriate test and interim analysis schedule. Their topics include placebo-controlled randomized trials, bio-equivalence testing, crossover and longitudinal studies, and linear and generalized linear models. Research in group sequential analysis has progressed rapidly over the past 20 years. Group Sequential Methods with Applications to Clinical Trials surveys and extends current methods for planning and conducting interim analyses. It provides straightforward descriptions of group sequential hypothesis tests in a form suited for direct application to a wide variety of clinical trials. Medical statisticians engaged in any investigations planned with interim analyses will find this book a useful and important tool.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475734379

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Advances in Sequence Analysis: Theory, Method, Applications

Advances in Sequence Analysis: Theory, Method, Applications
Author: Philippe Blanchard
Publisher: Springer
Total Pages: 308
Release: 2014-07-02
Genre: Social Science
ISBN: 3319049690

This book gives a general view of sequence analysis, the statistical study of successions of states or events. It includes innovative contributions on life course studies, transitions into and out of employment, contemporaneous and historical careers, and political trajectories. The approach presented in this book is now central to the life-course perspective and the study of social processes more generally. This volume promotes the dialogue between approaches to sequence analysis that developed separately, within traditions contrasted in space and disciplines. It includes the latest developments in sequential concepts, coding, atypical datasets and time patterns, optimal matching and alternative algorithms, survey optimization, and visualization. Field studies include original sequential material related to parenting in 19th-century Belgium, higher education and work in Finland and Italy, family formation before and after German reunification, French Jews persecuted in occupied France, long-term trends in electoral participation, and regime democratization. Overall the book reassesses the classical uses of sequences and it promotes new ways of collecting, formatting, representing and processing them. The introduction provides basic sequential concepts and tools, as well as a history of the method. Chapters are presented in a way that is both accessible to the beginner and informative to the expert.

Sequential Experimentation in Clinical Trials

Sequential Experimentation in Clinical Trials
Author: Jay Bartroff
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2012-12-12
Genre: Medical
ISBN: 1461461146

Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs.

Sequential Analysis

Sequential Analysis
Author: Alexander Tartakovsky
Publisher: CRC Press
Total Pages: 600
Release: 2014-08-27
Genre: Mathematics
ISBN: 1439838216

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detecti

Nonlinear Renewal Theory in Sequential Analysis

Nonlinear Renewal Theory in Sequential Analysis
Author: Michael Woodroofe
Publisher: SIAM
Total Pages: 124
Release: 1982-01-01
Genre: Technology & Engineering
ISBN: 9781611970302

The global approach to nonlinear renewal theory is integrated with the author's own local approach. Both the theory and its applications are placed in perspective by including a discussion of the linear renewal theorem and its applications to the sequential probability ratio test. Applications to repeated significance tests, to tests with power one, and to sequential estimation are also included. The monograph is self-contained for readers with a working knowledge of measure-theoretic probability and intermediate statistical theory.

An Introduction to Sequential Monte Carlo

An Introduction to Sequential Monte Carlo
Author: Nicolas Chopin
Publisher: Springer Nature
Total Pages: 378
Release: 2020-10-01
Genre: Mathematics
ISBN: 3030478459

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Sequential Analysis and Observational Methods for the Behavioral Sciences

Sequential Analysis and Observational Methods for the Behavioral Sciences
Author: Roger Bakeman
Publisher: Cambridge University Press
Total Pages: 201
Release: 2011-10-10
Genre: Psychology
ISBN: 1139504606

Behavioral scientists – including those in psychology, infant and child development, education, animal behavior, marketing and usability studies – use many methods to measure behavior. Systematic observation is used to study relatively natural, spontaneous behavior as it unfolds sequentially in time. This book emphasizes digital means to record and code such behavior; while observational methods do not require them, they work better with them. Key topics include devising coding schemes, training observers and assessing reliability, as well as recording, representing and analyzing observational data. In clear and straightforward language, this book provides a thorough grounding in observational methods along with considerable practical advice. It describes standard conventions for sequential data and details how to perform sequential analysis with a computer program developed by the authors. The book is rich with examples of coding schemes and different approaches to sequential analysis, including both statistical and graphical means.

Sequence Analysis and Related Approaches

Sequence Analysis and Related Approaches
Author: Matthias Studer
Publisher:
Total Pages: 298
Release: 2020-10-08
Genre: Social Science
ISBN: 9781013273841

This open access book provides innovative methods and original applications of sequence analysis (SA) and related methods for analysing longitudinal data describing life trajectories such as professional careers, family paths, the succession of health statuses, or the time use. The applications as well as the methodological contributions proposed in this book pay special attention to the combined use of SA and other methods for longitudinal data such as event history analysis, Markov modelling, and sequence network. The methodological contributions in this book include among others original propositions for measuring the precarity of work trajectories, Markov-based methods for clustering sequences, fuzzy and monothetic clustering of sequences, network-based SA, joint use of SA and hidden Markov models, and of SA and survival models. The applications cover the comparison of gendered occupational trajectories in Germany, the study of the changes in women market participation in Denmark, the study of typical day of dual-earner couples in Italy, of mobility patterns in Togo, of internet addiction in Switzerland, and of the quality of employment career after a first unemployment spell. As such this book provides a wealth of information for social scientists interested in quantitative life course analysis, and all those working in sociology, demography, economics, health, psychology, social policy, and statistics.; Provides new perspectives and methods for sequence analysis Focusses on the link between sequence analysis and other methods for longitudinal data, especially event history analysis and Markov models Stresses the complementarity of sequence analysis and other models for longitudinal data Applications of sequence analysis in a whole range of different domains This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.