Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide
Author:
Publisher: AASHTO
Total Pages: 202
Release: 2010
Genre: Technology & Engineering
ISBN: 1560514493

This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

AASHTO Guide for Design of Pavement Structures, 1993

AASHTO Guide for Design of Pavement Structures, 1993
Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
Total Pages: 622
Release: 1993
Genre: Pavements
ISBN: 1560510552

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.

Calibrating Mechanistic-Empirical Design Guide Permanent Deformation Models Based on Accelerated Pavement Testing

Calibrating Mechanistic-Empirical Design Guide Permanent Deformation Models Based on Accelerated Pavement Testing
Author: Feng Hong
Publisher:
Total Pages: 9
Release: 2009
Genre: Calibration
ISBN:

One of the challenges to the implementation of the mechanistic-empirical pavement design guide (MEPDG) comes from calibrating the transfer functions. This paper focuses on calibration of one of the major distress models in flexible pavement: permanent deformation or rutting. Two key aspects are critical to a successful rutting model calibration: data and method. Regarding the data, existing in-field information only provides total rut depth, which could not meet the requirement of permanent deformation in each structural layer by the MEPDG. Concerning the method, existing work either fails to address calibration factors from a holistic perspective by only focusing on individual sections separately or ignores variability inherent in those factors. In this study, layer-wise permanent deformation from instrumented pavement under accelerated pavement testing serves to accommodate the models calibration. A systematic calibration procedure is established, which globally optimizes all available information across all test sections. Through simulation and numerical optimization, optimal calibration shift factors for three typical flexible pavement materials, asphalt mixture, unbound granular base, and finegrain soil are obtained as 0.60, 0.49, and 0.84, respectively. This implies that the uncalibrated MEPDG is biased toward overprediction of rut depth. It is further suggested that a more rational result for each calibrated factor is to introduce an appropriate distribution to characterize its uncaptured variability. In addition, a case study involving using calibrated MEPDG to predict pavement performance or life indicates that (1) model calibration has a significant impact on the prediction and (2) the "fourth power law" is supported by the MEPDG.

Calibration and Validation of the Enhanced Integrated Climatic Model for Pavement Design

Calibration and Validation of the Enhanced Integrated Climatic Model for Pavement Design
Author: C. E. Zapata
Publisher: Transportation Research Board National Research
Total Pages: 76
Release: 2008
Genre: Technology & Engineering
ISBN:

"This report summarizes the results of research to evaluate, calibrate, and validate the Enhanced Integrated Climatic Model (EICM) incorporated in the original Version 0.7 (July 2004 release) of the Mechanistic-Empirical Pavement Design Guide (MEPDG) software with measured materials data from the Long-Term Pavement Performance Seasonal Monitoring Program (LTPP SMP) pavement sections. The report further describes subsequent changes made to the EICM to improve its prediction of moisture equilibrium for granular bases. The report will be of particular interest to pavement design engineers in state highway agencies and industry ..."--Foreword.

Calibration of Rutting Models for Structural and Mix Design

Calibration of Rutting Models for Structural and Mix Design
Author: Harold L. Von Quintus
Publisher: Transportation Research Board
Total Pages: 221
Release: 2012
Genre: Technology & Engineering
ISBN: 0309214068

TRB’s National Cooperative Highway Research Program (NCHRP) Report 719: Calibration of Rutting Models for Structural and Mix Design highlights proposed revisions to the Mechanistic–Empirical Pavement Design Guide (MEPDG) and software to incorporate three alternative rut-depth prediction models that rely on repeated load (triaxial) permanent deformation or constant height testing to provide the requisite input data.