Semiparametric Regression For Count Data
Download Semiparametric Regression For Count Data full books in PDF, epub, and Kindle. Read online free Semiparametric Regression For Count Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jianguo Sun |
Publisher | : Springer Science & Business Media |
Total Pages | : 283 |
Release | : 2013-10-09 |
Genre | : Medical |
ISBN | : 1461487153 |
Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.
Author | : Wolfgang Karl Härdle |
Publisher | : Springer Science & Business Media |
Total Pages | : 317 |
Release | : 2012-08-27 |
Genre | : Mathematics |
ISBN | : 364217146X |
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Author | : David Ruppert |
Publisher | : Cambridge University Press |
Total Pages | : 410 |
Release | : 2003-07-14 |
Genre | : Mathematics |
ISBN | : 9780521785167 |
Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.
Author | : Adrian Colin Cameron |
Publisher | : Cambridge University Press |
Total Pages | : 597 |
Release | : 2013-05-27 |
Genre | : Business & Economics |
ISBN | : 1107014166 |
This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.
Author | : Peter J. Bickel |
Publisher | : Springer |
Total Pages | : 588 |
Release | : 1998-06-01 |
Genre | : Mathematics |
ISBN | : 0387984739 |
This book deals with estimation in situations in which there is believed to be enough information to model parametrically some, but not all of the features of a data set. Such models have arisen in a wide context in recent years, and involve new nonlinear estimation procedures. Statistical models of this type are directly applicable to fields such as economics, epidemiology, and astronomy.
Author | : Luke John Keele |
Publisher | : John Wiley & Sons |
Total Pages | : 230 |
Release | : 2008-04-15 |
Genre | : Mathematics |
ISBN | : 9780470998120 |
An introductory guide to smoothing techniques, semiparametric estimators, and their related methods, this book describes the methodology via a selection of carefully explained examples and data sets. It also demonstrates the potential of these techniques using detailed empirical examples drawn from the social and political sciences. Each chapter includes exercises and examples and there is a supplementary website containing all the datasets used, as well as computer code, allowing readers to replicate every analysis reported in the book. Includes software for implementing the methods in S-Plus and R.
Author | : Brajendra C. Sutradhar |
Publisher | : Springer |
Total Pages | : 267 |
Release | : 2016-06-15 |
Genre | : Mathematics |
ISBN | : 331931260X |
This proceedings volume contains eight selected papers that were presented in the International Symposium in Statistics (ISS) 2015 On Advances in Parametric and Semi-parametric Analysis of Multivariate, Time Series, Spatial-temporal, and Familial-longitudinal Data, held in St. John’s, Canada from July 6 to 8, 2015. The main objective of the ISS-2015 was the discussion on advances and challenges in parametric and semi-parametric analysis for correlated data in both continuous and discrete setups. Thus, as a reflection of the theme of the symposium, the eight papers of this proceedings volume are presented in four parts. Part I is comprised of papers examining Elliptical t Distribution Theory. In Part II, the papers cover spatial and temporal data analysis. Part III is focused on longitudinal multinomial models in parametric and semi-parametric setups. Finally Part IV concludes with a paper on the inferences for longitudinal data subject to a challenge of important covariates selection from a set of large number of covariates available for the individuals in the study.
Author | : Jason W. Osborne |
Publisher | : SAGE Publications |
Total Pages | : 489 |
Release | : 2016-03-24 |
Genre | : Psychology |
ISBN | : 1506302750 |
In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
Author | : Wolfgang Härdle |
Publisher | : Springer Science & Business Media |
Total Pages | : 210 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642577008 |
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Author | : Joseph M. Hilbe |
Publisher | : Cambridge University Press |
Total Pages | : 301 |
Release | : 2014-07-21 |
Genre | : Business & Economics |
ISBN | : 1107028337 |
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.