Seminar on Fermat's Last Theorem

Seminar on Fermat's Last Theorem
Author: Vijaya Kumar Murty
Publisher: American Mathematical Soc.
Total Pages: 278
Release: 1995
Genre: Mathematics
ISBN: 0821803131

The most significant recent development in number theory is the work of Andrew Wiles on modular elliptic curves. Besides implying Fermat's Last Theorem, his work establishes a new reciprocity law. Reciprocity laws lie at the heart of number theory. Wiles' work draws on many of the tools of modern number theory and the purpose of this volume is to introduce readers to some of this background material. Based on a seminar held during 1993-1994 at the Fields Institute for Research in Mathematical Sciences, this book contains articles on elliptic curves, modular forms and modular curves, Serre's conjectures, Ribet's theorem, deformations of Galois representations, Euler systems, and annihilators of Selmer groups. All of the authors are well known in their field and have made significant contributions to the general area of elliptic curves, Galois representations, and modular forms. Features: Brings together a unique collection of number theoretic tools. Makes accessible the tools needed to understand one of the biggest breakthroughs in mathematics. Provides numerous references for further study.

13 Lectures on Fermat's Last Theorem

13 Lectures on Fermat's Last Theorem
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
Total Pages: 306
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468493426

Lecture I The Early History of Fermat's Last Theorem.- 1 The Problem.- 2 Early Attempts.- 3 Kummer's Monumental Theorem.- 4 Regular Primes.- 5 Kummer's Work on Irregular Prime Exponents.- 6 Other Relevant Results.- 7 The Golden Medal and the Wolfskehl Prize.- Lecture II Recent Results.- 1 Stating the Results.- 2 Explanations.- Lecture III B.K. = Before Kummer.- 1 The Pythagorean Equation.- 2 The Biquadratic Equation.- 3 The Cubic Equation.- 4 The Quintic Equation.- 5 Fermat's Equation of Degree Seven.- Lecture IV The Naïve Approach.- 1 The Relations of Barlow and Abel.- 2 Sophie Germain.- 3 Co.

The Last Theorem

The Last Theorem
Author: Arthur C. Clarke
Publisher: HarperCollins UK
Total Pages: 23
Release: 2008-12-07
Genre: Fiction
ISBN: 0007308140

The final work from the brightest star in science fiction’s galaxy. Arthur C Clarke, who predicted the advent of communication satellites and author of 2001: A Space Odyssey completes a lifetime career in science fiction with a masterwork.

Fermat's Last Theorem

Fermat's Last Theorem
Author: Takeshi Saitō
Publisher: American Mathematical Soc.
Total Pages: 218
Release: 2013-11-01
Genre: Mathematics
ISBN: 0821898485

This book, together with the companion volume, Fermat's Last Theorem: The Proof, presents in full detail the proof of Fermat's Last Theorem given by Wiles and Taylor. With these two books, the reader will be able to see the whole picture of the proof to appreciate one of the deepest achievements in the history of mathematics.

The Simpsons and Their Mathematical Secrets

The Simpsons and Their Mathematical Secrets
Author: Simon Singh
Publisher: A&C Black
Total Pages: 266
Release: 2013-01-01
Genre: Mathematics
ISBN: 1408835304

From bestselling author of Fermat's Last Theorem, a must-have for number lovers and Simpsons fans

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem
Author: Gary Cornell
Publisher: Springer Science & Business Media
Total Pages: 592
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461219744

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.

The Girl who Played with Fire

The Girl who Played with Fire
Author: Stieg Larsson
Publisher: Vintage
Total Pages: 738
Release: 2010
Genre: Blomkvist, Mikael (Fictitious character)
ISBN: 0307476154

When the reporters to a sex-trafficking exposé are murdered and computer hacker Lisbeth Salander is targeted as the killer, Mikael Blomkvist, the publisher of the exposé, investigates to clear Lisbeth's name.

Learning Modern Algebra

Learning Modern Algebra
Author: Albert Cuoco
Publisher: MAA
Total Pages: 481
Release: 2013
Genre: Mathematics
ISBN: 1939512018

A guide to modern algebra for mathematics teachers. It makes explicit connections between abstract algebra and high-school mathematics.

The Fermat Diary

The Fermat Diary
Author: Charles J. Mozzochi
Publisher: American Mathematical Soc.
Total Pages: 246
Release: 2000
Genre: Mathematics
ISBN: 9780821826706

This book concentrates on the final chapter of the story of perhaps the most famous mathematics problem of our time: Fermat's Last Theorem. The full story begins in 1637, with Pierre de Fermat's enigmatic marginal note in his copy of Diophantus's Arithmetica. It ends with the spectacular solution by Andrew Wiles some 350 years later. The Fermat Diary provides a record in pictures and words of the dramatic time from June 1993 to August 1995, including the period when Wiles completed the last stages of the proof and concluding with the mathematical world's celebration of Wiles' result at Boston University. This diary takes us through the process of discovery as reported by those who worked on the great puzzle: Gerhard Frey who conjectured that Shimura-Taniyama implies Fermat; Ken Ribet who followed a difficult and speculative plan of attack suggested by Jean-Pierre Serre and established the statement by Frey; and Andrew Wiles who announced a proof of enough of the Shimura-Taniyama conjecture to settle Fermat's Last Theorem, only to announce months later that there was a gap in the proof. Finally, we are brought to the historic event on September 19, 1994, when Wiles, with the collaboration of Richard Taylor, dramatically closed the gap. The book follows the much-in-demand Wiles through his travels and lectures, finishing with the Instructional Conference on Number Theory and Arithmetic Geometry at Boston University. There are many important names in the recent history of Fermat's Last Theorem. This book puts faces and personalities to those names. Mozzochi also uncovers the details of certain key pieces of the story. For instance, we learn in Frey's own words the story of his conjecture, about his informal discussion and later lecture at Oberwolfach and his letter containing the actual statement. We learn from Faltings about his crucial role in the weeks before Wiles made his final announcement. An appendix contains the Introduction of Wiles' Annals paper in which he describes the evolution of his solution and gives a broad overview of his methods. Shimura explains his position concerning the evolution of the Shimura-Taniyama conjecture. Mozzochi also conveys the atmosphere of the mathematical community--and the Princeton Mathematics Department in particular--during this important period in mathematics. This eyewitness account and wonderful collection of photographs capture the marvel and unfolding drama of this great mathematical and human story.

A First Course in Modular Forms

A First Course in Modular Forms
Author: Fred Diamond
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2006-03-30
Genre: Mathematics
ISBN: 0387272267

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.