Semiconductor Physical Electronics
Download Semiconductor Physical Electronics full books in PDF, epub, and Kindle. Read online free Semiconductor Physical Electronics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sheng S. Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 514 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 146130489X |
The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.
Author | : Nasser Peyghambarian |
Publisher | : |
Total Pages | : 504 |
Release | : 1993 |
Genre | : Science |
ISBN | : |
Author | : Charles M. Wolfe |
Publisher | : |
Total Pages | : 378 |
Release | : 1989 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : Donald A. Neamen |
Publisher | : |
Total Pages | : 746 |
Release | : 2003 |
Genre | : Semiconductores |
ISBN | : 9780071198622 |
This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.
Author | : L. Solymar |
Publisher | : Springer Science & Business Media |
Total Pages | : 217 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401165076 |
Author | : Vladislav A. Vashchenko |
Publisher | : Springer Science & Business Media |
Total Pages | : 337 |
Release | : 2008-03-22 |
Genre | : Technology & Engineering |
ISBN | : 0387745149 |
Providing an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics, the purpose of the book is popularization of the physical approach for reliability assurance. Another unique aspect of the book is the coverage given to the role of local structural defects, their mathematical description, and their impact on the reliability of the semiconductor devices.
Author | : Simon M. Sze |
Publisher | : John Wiley & Sons |
Total Pages | : 828 |
Release | : 2006-12-13 |
Genre | : Technology & Engineering |
ISBN | : 0470068302 |
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.
Author | : Marius Grundmann |
Publisher | : Springer Nature |
Total Pages | : 905 |
Release | : 2021-03-06 |
Genre | : Technology & Engineering |
ISBN | : 3030515699 |
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
Author | : S. M. Sze |
Publisher | : Wiley-Interscience |
Total Pages | : 584 |
Release | : 1998 |
Genre | : Technology & Engineering |
ISBN | : |
An in-depth, up-to-date presentation of the physics and operational principles of all modern semiconductor devices The companion volume to Dr. Sze's classic Physics of Semiconductor Devices, Modern Semiconductor Device Physics covers all the significant advances in the field over the past decade. To provide the most authoritative, state-of-the-art information on this rapidly developing technology, Dr. Sze has gathered the contributions of world-renowned experts in each area. Principal topics include bipolar transistors, compound-semiconductor field-effect-transistors, MOSFET and related devices, power devices, quantum-effect and hot-electron devices, active microwave diodes, high-speed photonic devices, and solar cells. Supported by hundreds of illustrations and references and a problem set at the end of each chapter, Modern Semiconductor Device Physics is the essential text/reference for electrical engineers, physicists, material scientists, and graduate students actively working in microelectronics and related fields.
Author | : Umesh Mishra |
Publisher | : Springer Science & Business Media |
Total Pages | : 583 |
Release | : 2007-11-28 |
Genre | : Technology & Engineering |
ISBN | : 1402064802 |
Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.