Essentials of Statistical Inference

Essentials of Statistical Inference
Author: G. A. Young
Publisher: Cambridge University Press
Total Pages: 240
Release: 2005-07-25
Genre: Mathematics
ISBN: 9780521839716

Aimed at advanced undergraduates and graduate students in mathematics and related disciplines, this engaging textbook gives a concise account of the main approaches to inference, with particular emphasis on the contrasts between them. It is the first textbook to synthesize contemporary material on computational topics with basic mathematical theory.

Hand to Mouth

Hand to Mouth
Author: Linda Tirado
Publisher: Penguin
Total Pages: 242
Release: 2015-09-01
Genre: Biography & Autobiography
ISBN: 0425277976

The real-life Nickel and Dimed—the author of the wildly popular “Poverty Thoughts” essay tells what it’s like to be working poor in America. ONE OF THE FIVE MOST IMPORTANT BOOKS OF THE YEAR--Esquire “DEVASTATINGLY SMART AND FUNNY. I am the author of Nickel and Dimed, which tells the story of my own brief attempt, as a semi-undercover journalist, to survive on low-wage retail and service jobs. TIRADO IS THE REAL THING.”—Barbara Ehrenreich, from the Foreword As the haves and have-nots grow more separate and unequal in America, the working poor don’t get heard from much. Now they have a voice—and it’s forthright, funny, and just a little bit furious. Here, Linda Tirado tells what it’s like, day after day, to work, eat, shop, raise kids, and keep a roof over your head without enough money. She also answers questions often asked about those who live on or near minimum wage: Why don’t they get better jobs? Why don’t they make better choices? Why do they smoke cigarettes and have ugly lawns? Why don’t they borrow from their parents? Enlightening and entertaining, Hand to Mouth opens up a new and much-needed dialogue between the people who just don’t have it and the people who just don’t get it.

Statistical Intervals

Statistical Intervals
Author: William Q. Meeker
Publisher: John Wiley & Sons
Total Pages: 648
Release: 2017-03-09
Genre: Mathematics
ISBN: 1118594959

Describes statistical intervals to quantify sampling uncertainty,focusing on key application needs and recently developed methodology in an easy-to-apply format Statistical intervals provide invaluable tools for quantifying sampling uncertainty. The widely hailed first edition, published in 1991, described the use and construction of the most important statistical intervals. Particular emphasis was given to intervals—such as prediction intervals, tolerance intervals and confidence intervals on distribution quantiles—frequently needed in practice, but often neglected in introductory courses. Vastly improved computer capabilities over the past 25 years have resulted in an explosion of the tools readily available to analysts. This second edition—more than double the size of the first—adds these new methods in an easy-to-apply format. In addition to extensive updating of the original chapters, the second edition includes new chapters on: Likelihood-based statistical intervals Nonparametric bootstrap intervals Parametric bootstrap and other simulation-based intervals An introduction to Bayesian intervals Bayesian intervals for the popular binomial, Poisson and normal distributions Statistical intervals for Bayesian hierarchical models Advanced case studies, further illustrating the use of the newly described methods New technical appendices provide justification of the methods and pathways to extensions and further applications. A webpage directs readers to current readily accessible computer software and other useful information. Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition is an up-to-date working guide and reference for all who analyze data, allowing them to quantify the uncertainty in their results using statistical intervals.

Probability for Statistics and Machine Learning

Probability for Statistics and Machine Learning
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
Total Pages: 796
Release: 2011-05-17
Genre: Mathematics
ISBN: 1441996346

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

Bootstrap Methods

Bootstrap Methods
Author: Michael R. Chernick
Publisher: John Wiley & Sons
Total Pages: 337
Release: 2011-09-23
Genre: Mathematics
ISBN: 1118211596

A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.

Handbook of Computational Statistics

Handbook of Computational Statistics
Author: James E. Gentle
Publisher: Springer Science & Business Media
Total Pages: 1180
Release: 2012-07-06
Genre: Computers
ISBN: 3642215513

The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
Total Pages: 726
Release: 2008-03-07
Genre: Mathematics
ISBN: 0387759700

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Matching, Regression Discontinuity, Difference in Differences, and Beyond

Matching, Regression Discontinuity, Difference in Differences, and Beyond
Author: Myoung-jae Lee
Publisher: Oxford University Press
Total Pages: 281
Release: 2016-05-02
Genre: Business & Economics
ISBN: 0190258756

Myoung-jae Lee reviews the three most popular methods (and their extensions) in applied economics and other social sciences: matching, regression discontinuity, and difference in differences. This book introduces the underlying econometric and statistical ideas, shows what is identified and how the identified parameters are estimated, and illustrates how they are applied with real empirical examples. Lee emphasizes how to implement the three methods with data: data and programs are provided in a useful online appendix. All readers-theoretical econometricians/statisticians, applied economists/social-scientists and researchers/students-will find something useful in the book from different perspectives.

Handbook of Computational Statistics

Handbook of Computational Statistics
Author: Yuichi Mori
Publisher: Springer Science & Business Media
Total Pages: 1096
Release: 2004-07-14
Genre: Computers
ISBN: 9783540404644

The Handbook of Computational Statistics: Concepts and Methodology is divided into four parts. It begins with an overview over the field of Computational Statistics. The second part presents several topics in the supporting field of statistical computing. Emphasis is placed on the need of fast and accurate numerical algorithms and it discusses some of the basic methodologies for transformation, data base handling and graphics treatment. The third part focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Finally a set of selected applications like Bioinformatics, Medical Imaging, Finance and Network Intrusion Detection highlight the usefulness of computational statistics.