Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Author: Ferry Roelofs
Publisher: Woodhead Publishing
Total Pages: 464
Release: 2018-11-30
Genre: Science
ISBN: 0081019815

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications

Multiscale and Multiresolution Approaches in Turbulence

Multiscale and Multiresolution Approaches in Turbulence
Author: Pierre Sagaut
Publisher: World Scientific
Total Pages: 446
Release: 2013
Genre: Science
ISBN: 1848169876

The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.

Direct and Large-Eddy Simulation X

Direct and Large-Eddy Simulation X
Author: Dimokratis G.E. Grigoriadis
Publisher: Springer
Total Pages: 523
Release: 2017-10-06
Genre: Technology & Engineering
ISBN: 3319632124

This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.

Turbulence Models and Their Application

Turbulence Models and Their Application
Author: Tuncer Cebeci
Publisher: Springer Science & Business Media
Total Pages: 140
Release: 2003-12-04
Genre: Science
ISBN: 9783540402886

After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.

AIAA Journal

AIAA Journal
Author: American Institute of Aeronautics and Astronautics
Publisher:
Total Pages: 1024
Release: 2006
Genre: Aeronautics
ISBN:

Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students

Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students
Author: Michael Leschziner
Publisher: World Scientific
Total Pages: 424
Release: 2015-08-20
Genre: Science
ISBN: 1783266635

This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics — Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.

Turbulent Combustion

Turbulent Combustion
Author: Norbert Peters
Publisher: Cambridge University Press
Total Pages: 322
Release: 2000-08-15
Genre: Science
ISBN: 1139428063

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

New Results in Numerical and Experimental Fluid Mechanics VI

New Results in Numerical and Experimental Fluid Mechanics VI
Author: Cameron Tropea
Publisher: Springer Science & Business Media
Total Pages: 487
Release: 2007-10-18
Genre: Technology & Engineering
ISBN: 3540744606

This volume features the contributions to the 15th Symposium of the STAB (German Aerospace Aerodynamics Association). Papers provide a broad overview of ongoing work in Germany, including high aspect ratio wings, low aspect ratio wings, bluff bodies, laminar flow control and transition, active flow control, hypersonic flows, aeroelasticity, aeroacoustics, mathematical fundamentals, numerical simulations, physical fundamentals, and facilities.