Handbook of Liquids-Assisted Laser Processing

Handbook of Liquids-Assisted Laser Processing
Author: Arvi Kruusing
Publisher: Elsevier
Total Pages: 465
Release: 2010-07-07
Genre: Technology & Engineering
ISBN: 0080555047

Laser processing of solid materials has been commonly performed in gas ambient. Having the workpiece immersed into liquid, having a liquid film on it, or soaking the material with liquid gives several advantages such as removal of the debris, lowering the heat load on the workpiece, and confining the vapour and plasma, resulting in higher shock pressure on the surface. Introduced in the 1980s, neutral liquids assisted laser processing (LALP) has proved to be advantageous in the cutting of heat-sensitive materials, shock peening of machine parts, cleaning of surfaces, fabrication of micro-optical components, and for generation of nanoparticles in liquids. The liquids used range from water through organic solvents to cryoliquids. The primary aim of Handbook of Liquids-Assisted Laser Processing is to present the essentials of previous research (tabulated data of experimental conditions and results), and help researchers develop new processing and diagnostics techniques (presenting data of liquids and a review of physical phenomena associated with LALP). Engineers can use the research results and technological innovation information to plan their materials processing tasks. Laser processing in liquids has been applied to a number of different tasks in various fields such as mechanical engineering, microengineering, chemistry, optics, and bioscience. A comprehensive glossary with definitions of the terms and explanations has been added. The book covers the use of chemically inert liquids under normal conditions. Laser chemical processing examples are presented for comparison only. - First book in this rapidly growing field impacting mechanical and micro/nano-engineering - Covers different kinds of liquid-assisted laser processing of a large variety of materials - Covers lasers emitting from UV to IR with pulse lengths down to femtoseconds - Reviews over 500 scientific articles and 300 inventions and tabulates their main features - Gives a qualitative and quantitative description of the physical phenomena associated with LALP - Tabulates 61 parameters for 100 liquids - Glossary of over 200 terms and abbreviations

Fifth International Symposium on Laser Precision Microfabrication

Fifth International Symposium on Laser Precision Microfabrication
Author: Isamu Miyamoto
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 794
Release: 2004
Genre: Technology & Engineering
ISBN:

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Laser Cleaning

Laser Cleaning
Author: Boris Luk`yanchuk
Publisher: World Scientific
Total Pages: 482
Release: 2002-09-16
Genre: Science
ISBN: 9814488631

Laser cleaning is very important for modern high technology. It is used, or considered for use in the fabrication of printed circuit boards, in the production of dynamic random access memory (DRAM), in lithography and epitaxial growth, for the removal of contaminations during via-hole production, and for the cleaning of micro-optical and micro-mechanical components.This invaluable book presents the mechanics of the cleaning processes, experimental results, and different applications, including laser cleaning of art. It contains review articles by leading specialists in laser cleaning who participated in the 1st International Workshop on Laser Cleaning, held in Singapore in 2001.

Laser Beam Shaping Applications

Laser Beam Shaping Applications
Author: Fred M. Dickey
Publisher: CRC Press
Total Pages: 430
Release: 2017-02-24
Genre: Technology & Engineering
ISBN: 1498714420

This new edition details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. New chapters cover illumination light shaping in optical lithography; optical micro-manipulation of live mammalian cells through trapping, sorting, and transfection; and laser beam shaping through fiber optic beam delivery. The book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, and spatially dispersive lasers. It also provides a history of the field and includes extensive references.

Micromachining Techniques for Fabrication of Micro and Nano Structures

Micromachining Techniques for Fabrication of Micro and Nano Structures
Author: Mojtaba Kahrizi
Publisher: BoD – Books on Demand
Total Pages: 316
Release: 2012-02-03
Genre: Science
ISBN: 9533079061

Micromachining is used to fabricate three-dimensional microstructures and it is the foundation of a technology called Micro-Electro-Mechanical-Systems (MEMS). Bulk micromachining and surface micromachining are two major categories (among others) in this field. This book presents advances in micromachining technology. For this, we have gathered review articles related to various techniques and methods of micro/nano fabrications, like focused ion beams, laser ablation, and several other specialized techniques, from esteemed researchers and scientists around the world. Each chapter gives a complete description of a specific micromachining method, design, associate analytical works, experimental set-up, and the final fabricated devices, followed by many references related to this field of research available in other literature. Due to the multidisciplinary nature of this technology, the collection of articles presented here can be used by scientists and researchers in the disciplines of engineering, materials sciences, physics, and chemistry.

Laser Growth and Processing of Photonic Devices

Laser Growth and Processing of Photonic Devices
Author: Nikolaos A Vainos
Publisher: Elsevier
Total Pages: 492
Release: 2012-07-10
Genre: Technology & Engineering
ISBN: 0857096222

The use of lasers in the processing of electronic and photonic material is becoming increasingly widespread, with technological advances reducing costs and increasing both the quality and range of novel devices which can be produced. Laser growth and processing of photonic devices is the first book to review this increasingly important field.Part one investigates laser-induced growth of materials and surface structures, with pulsed laser deposition techniques, the formation of nanocones and the fabrication of periodic photonic microstructures explored in detail. Laser-induced three-dimensional micro- and nano-structuring are the focus of part two. Exploration of multiphoton lithography, processing and fabrication is followed by consideration of laser-based micro- and nano-fabrication, laser-induced soft matter organization and microstructuring, and laser-assisted polymer joining methods. The book concludes in part three with an investigation into laser fabrication and manipulation of photonic structures and devices. Laser seeding and thermal processing of glass with nanoscale resolution, laser-induced refractive index manipulation, and the thermal writing of photonic devices in glass and polymers are all considered.With its distinguished editor and international team of expert contributors, Laser growth and processing of photonic devices is an essential tool for all materials scientists, engineers and researchers in the microelectronics industry. - The first book to review the increasingly important field of laser growth and processing of photonic devices - Investigates laser-induced growth of materials and surface structures, pulsed laser deposition techniques, the formation of nanocones and the fabrication of periodic photonic microstructures - Examines laser-induced three-dimensional micro- and nano-structuring and concludes with an investigation into laser fabrication and manipulation of photonic structures and devices

Plasma Processing of Nanomaterials

Plasma Processing of Nanomaterials
Author: R. Mohan Sankaran
Publisher: CRC Press
Total Pages: 433
Release: 2017-12-19
Genre: Science
ISBN: 1351832948

We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.