Science Needs For Microbial Forensics
Download Science Needs For Microbial Forensics full books in PDF, epub, and Kindle. Read online free Science Needs For Microbial Forensics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bruce Budowle |
Publisher | : Academic Press |
Total Pages | : 753 |
Release | : 2010-10-27 |
Genre | : Science |
ISBN | : 0123820073 |
Microbial Forensics is a rapidly evolving scientific discipline. In the last decade, and particularly due to the anthrax letter attacks in the United States, microbial forensics has become more formalized and has played an increasingly greater role in crime investigations. This has brought renewed interest, development and application of new technologies, and new rules of forensic and policy engagement. It has many applications ranging from biodefense, criminal investigations, providing intelligence information, making society more secure, and helping protect precious resources, particularly human life. A combination of diverse areas is investigated, including the major disciplines of biology, microbiology, medicine, chemistry, physics, statistics, population genetics, and computer science. Microbial Forensics, Second Edition is fully revised and updated and serves as a complete reference of the discipline. It describes the advances, as well as the challenges and opportunities ahead, and will be integral in applying science to help solve future biocrimes. - A collection of microbiology, virology, toxicology and mycology as it relates to forensics, in one reference - New and expanded content to include statistical analysis of forensic data and legal admissibility and the standards of evidence, to name a few - Includes research information and application of that research to crime scene analysis, which will allow practitioners to understand and apply the knowledge to their practice with ease
Author | : National Research Council (U.S.). Committee on Science Needs for Microbial Forensics: Developing an Initial International Roadmap |
Publisher | : |
Total Pages | : 0 |
Release | : 2014 |
Genre | : Law |
ISBN | : 9780309302456 |
For these reasons, building awareness of and capacity in microbial forensics can assist in our understanding of what may have occurred during a biothreat event, and international collaborations that engage the broader scientific and policy-making communities are likely to strengthen our microbial forensics capabilities. One goal would be to create a shared technical understanding of the possibilities--and limitations--of the scientific bases for microbial forensics analysis. Science Needs for Microbial Forensics: Developing Initial International Research Priorities, based partly on a workshop held in Zabgreb, Croatia in 2013, identifies scientific needs that must be addressed to improve the capabilities of microbial forensics to investigate infectious disease outbreaks and provide evidence of sufficient quality to support legal proceedings and the development of government policies.
Author | : David O. Carter |
Publisher | : John Wiley & Sons |
Total Pages | : 424 |
Release | : 2017-03-27 |
Genre | : Law |
ISBN | : 1119062578 |
Forensic Microbiology focuses on newly emerging areas of microbiology relevant to medicolegal and criminal investigations: postmortem changes, establishing cause of death, estimating postmortem interval, and trace evidence analysis. Recent developments in sequencing technology allow researchers, and potentially practitioners, to examine microbial communities at unprecedented resolution and in multidisciplinary contexts. This detailed study of microbes facilitates the development of new forensic tools that use the structure and function of microbial communities as physical evidence. Chapters cover: Experiment design Data analysis Sample preservation The influence of microbes on results from autopsy, toxicology, and histology Decomposition ecology Trace evidence This diverse, rapidly evolving field of study has the potential to provide high quality microbial evidence which can be replicated across laboratories, providing spatial and temporal evidence which could be crucial in a broad range of investigative contexts. This book is intended as a resource for students, microbiologists, investigators, pathologists, and other forensic science professionals.
Author | : John B. Cliff |
Publisher | : Springer Science & Business Media |
Total Pages | : 148 |
Release | : 2011-12-10 |
Genre | : Science |
ISBN | : 1603272194 |
Combining the disciplines of biological, physical and chemical science, microbial forensics has a rapidly rising profile in a world increasingly troubled by the threat of ‘biocrime’ and ‘bioterrorism’. This valuable resource is a major addition to a body of literature reckoned to lack sufficient breadth. It presents a variety of phenotypic and trace signature methodologies associated with cultured microorganisms that, despite being genetically identical, may be characterized by differing cultural environments. One of the central challenges faced by those working in this field is the sheer diversity of potentially harmful agents, which in themselves total more than 1000 viruses, bacteria, fungi and protozoan parasites. Their numerous additional variants render the process of ‘fingerprinting’ biological agents notoriously difficult, especially when the limitations of genetic analysis are factored in. Attribution of crime is relatively easy through human DNA, but lacking the genetic individuation of humans and animals, microbial forensics has to complement phylogenetic techniques with chemical and physical ones. In the best case, genetic analysis in the ‘biocrime’ sector can exclude sources, narrow the population of possible sources and support associations with potential sources. To complement these genetic techniques, chemical and physical methods can be used to compare ‘signatures’ imparted to microbial samples by environments in which they are grown and processed. Collating a range of microbiological fingerprinting techniques in one volume, and covering everything from statistical analysis to laboratory protocols, this publication furthers the aim of forensic investigators who need robust and legally admissible forensic evidence to present in a courtroom.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 348 |
Release | : 2009-07-29 |
Genre | : Law |
ISBN | : 0309142393 |
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 170 |
Release | : 2007-06-24 |
Genre | : Science |
ISBN | : 0309106761 |
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 318 |
Release | : 2017-10-06 |
Genre | : Science |
ISBN | : 0309449839 |
People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.
Author | : Institute of Medicine |
Publisher | : National Academies Press |
Total Pages | : 429 |
Release | : 2013-05-02 |
Genre | : Science |
ISBN | : 0309268192 |
Over the past several decades, new scientific tools and approaches for detecting microbial species have dramatically enhanced our appreciation of the diversity and abundance of the microbiota and its dynamic interactions with the environments within which these microorganisms reside. The first bacterial genome was sequenced in 1995 and took more than 13 months of work to complete. Today, a microorganism's entire genome can be sequenced in a few days. Much as our view of the cosmos was forever altered in the 17th century with the invention of the telescope, these genomic technologies, and the observations derived from them, have fundamentally transformed our appreciation of the microbial world around us. On June 12 and 13, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to discuss the scientific tools and approaches being used for detecting and characterizing microbial species, and the roles of microbial genomics and metagenomics to better understand the culturable and unculturable microbial world around us. Through invited presentations and discussions, participants examined the use of microbial genomics to explore the diversity, evolution, and adaptation of microorganisms in a wide variety of environments; the molecular mechanisms of disease emergence and epidemiology; and the ways that genomic technologies are being applied to disease outbreak trace back and microbial surveillance. Points that were emphasized by many participants included the need to develop robust standardized sampling protocols, the importance of having the appropriate metadata, data analysis and data management challenges, and information sharing in real time. The Science and Applications of Microbial Genomics summarizes this workshop.
Author | : Nancy N. Chen |
Publisher | : |
Total Pages | : 0 |
Release | : 2014 |
Genre | : Biosecurity |
ISBN | : 9781938645426 |
Life today is rife with rapid-fire "high alert" responses, a proliferating trend that is especially pronounced in the United States (though most certainly felt elsewhere as well), where past catastrophes shape expanding perceptions of imminent danger. September 11, 2001 looms as an inescapable spectral presence, defining an important baseline for the ramping up of biosecurity measures. However, the contributors to this volume argue against biosecurity as the new status quo by focusing instead on the ugly underbelly. Through considering the vulnerability of individuals and groups and particularly looking at how vulnerability propagates in the shadow of biosecurity, BioInsecurity and Vulnerability challenges the acceptance of surveillance measures or security interventions as necessities of life in the new millennium.
Author | : Cardwell, Kitty F. |
Publisher | : IGI Global |
Total Pages | : 454 |
Release | : 2022-01-21 |
Genre | : Science |
ISBN | : 1799879372 |
Agriculture is often under the threat of invasive species of animal pests and pathogens that do harm to crops. It is essential to have the best methods and tools available to prevent this harm. Biosecurity is a mixture of institutions, policies, and science applications that attempts to prevent the spread of unhealthy pests. Tactical Sciences for Biosecurity in Animal and Plant Systems focuses on the tactical sciences needed to succeed in the biosecurity objectives of preventing plant and animal pathogens from entering or leaving the United States. This book explores a divergence of tactics between plant and animal exotic disease response. Covering topics such as animal pests and pathogens, tactical management, and early detection, this book is an essential resource for researchers, academicians, university faculty, government biosecurity practitioners, customs officers, clinical scientists, and students.