Electrochemistry of Zirconia Gas Sensors

Electrochemistry of Zirconia Gas Sensors
Author: Serge Zhuiykov
Publisher: CRC Press
Total Pages: 289
Release: 2007-07-27
Genre: Science
ISBN: 1420047620

The first book to present a detailed analysis of the electrochemistry, development, modeling, optimization, testing, and technology behind modern zirconia-based sensors, Electrochemistry of Zirconia Gas Sensors explores how to tailor these sensors to meet specific industrial needs. The book addresses a range of different stages of development in zi

Advances in Ceramics

Advances in Ceramics
Author: Costas Sikalidis
Publisher: BoD – Books on Demand
Total Pages: 566
Release: 2011-09-06
Genre: Science
ISBN: 9533073500

The current book consists of twenty-four chapters divided into three sections. Section I includes fourteen chapters in electric and magnetic ceramics which deal with modern specific research on dielectrics and their applications, on nanodielectrics, on piezoceramics, on glass ceramics with para-, anti- or ferro-electric active phases, of varistors ceramics and magnetic ceramics. Section II includes seven chapters in bioceramics which include review information and research results/data on biocompatibility, on medical applications of alumina, zirconia, silicon nitride, ZrO2, bioglass, apatite-wollastonite glass ceramic and b-tri-calcium phosphate. Section III includes three chapters in applications of ceramics in environmental improvement and protection, in water cleaning, in metal bearing wastes stabilization and in utilization of wastes from ceramic industry in concrete and concrete products.

Chemical Thermodynamics of Zirconium

Chemical Thermodynamics of Zirconium
Author:
Publisher: Elsevier
Total Pages: 545
Release: 2005-12-06
Genre: Science
ISBN: 0080457533

This volume is part of the series on "Chemical Thermodynamics", published under the aegis of the OECD Nuclear Energy Agency. It contains a critical review of the literature on thermodynamic data for inorganic compounds of zirconium. A review team, composed of five internationally recognized experts, has critically reviewed all the scientific literature containing chemical thermodynamic information for the above mentioned systems. The results of this critical review carried out following the Guidelines of the OECD NEA Thermochemical Database Project have been documented in the present volume, which contains tables of selected values for formation and reaction thermodynamical properties and an extensive bibliography.* Critical review of all literature on chemical thermodynamics for compounds and complexes of Zr.* Tables of recommended Selected Values for thermochemical properties* Documented review procedure* Exhaustive bibliography* Intended to meet requirements of radioactive waste management community* Valuable reference source for the physical, analytical and environmental chemist.

Hydrothermal Reactions for Materials Science and Engineering

Hydrothermal Reactions for Materials Science and Engineering
Author: S. Somiya
Publisher: Springer Science & Business Media
Total Pages: 503
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400907435

According to the late Professor Emeritus Seitaro Tsuboi,l the word 'hydrothermal' was used as early as 1849 by a British geologist, Sir Roderick Murchison (1792-187 I), in relation to the action of heated water in bringing about change in the earth's crust. The term abounds in later geological literature, and is most frequently met in connection with the processes that take place at a stage near the closing in the course of consolidation of magma. When a cooling magma reaches that stage, the residual liquid contains a large proportion of volatile components, chiefly water, and further cooling results in the formation of minerals of special interest or ore-deposits. A great concern of Tsuboi's as a petrologist was to elucidate the details of the nature of various actions involved in these 'hydrothermal processes', of which little was known. It is remarkable that, in the last few decades, extensive high-temperature and high-pressure experiments, in which water plays an important role, have become practicable in laboratories, owing to the development of new apparatus and new methods. As a result, the knowledge essential to the elucidation of 'hydrothermal processes' has been improved, but is still far from complete.