Problems And Solutions In Differential Geometry, Lie Series, Differential Forms, Relativity And Applications

Problems And Solutions In Differential Geometry, Lie Series, Differential Forms, Relativity And Applications
Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
Total Pages: 297
Release: 2017-10-20
Genre: Science
ISBN: 9813230843

This volume presents a collection of problems and solutions in differential geometry with applications. Both introductory and advanced topics are introduced in an easy-to-digest manner, with the materials of the volume being self-contained. In particular, curves, surfaces, Riemannian and pseudo-Riemannian manifolds, Hodge duality operator, vector fields and Lie series, differential forms, matrix-valued differential forms, Maurer-Cartan form, and the Lie derivative are covered.Readers will find useful applications to special and general relativity, Yang-Mills theory, hydrodynamics and field theory. Besides the solved problems, each chapter contains stimulating supplementary problems and software implementations are also included. The volume will not only benefit students in mathematics, applied mathematics and theoretical physics, but also researchers in the field of differential geometry.

Schaum's Outline of Differential Geometry

Schaum's Outline of Differential Geometry
Author: Martin M. Lipschutz
Publisher: McGraw Hill Professional
Total Pages: 292
Release: 1969-06-22
Genre: Juvenile Nonfiction
ISBN: 9780070379855

For senior undergraduates or first year graduate students.

Schaum's Outline of Differential Equations, 4th Edition

Schaum's Outline of Differential Equations, 4th Edition
Author: Richard Bronson
Publisher: McGraw Hill Professional
Total Pages: 1794
Release: 2014-03-14
Genre: Study Aids
ISBN: 007182247X

Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 550 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum’s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. Helpful tables and illustrations increase your understanding of the subject at hand. This Schaum's Outline gives you 563 fully solved problems Concise explanation of all course concepts Covers first-order, second-order, and nth-order equations Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores! Schaum's Outlines--Problem Solved.

Geometry, Topology and Physics

Geometry, Topology and Physics
Author: Mikio Nakahara
Publisher: Taylor & Francis
Total Pages: 596
Release: 2018-10-03
Genre: Mathematics
ISBN: 1420056948

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists
Author: Marián Fecko
Publisher: Cambridge University Press
Total Pages: 11
Release: 2006-10-12
Genre: Science
ISBN: 1139458035

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers
Author: P.M. Gadea
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2009-12-12
Genre: Mathematics
ISBN: 9048135648

A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

Geometrical Methods of Mathematical Physics

Geometrical Methods of Mathematical Physics
Author: Bernard F. Schutz
Publisher: Cambridge University Press
Total Pages: 272
Release: 1980-01-28
Genre: Science
ISBN: 1107268141

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Elements of Differential Geometry

Elements of Differential Geometry
Author: Richard S. Millman
Publisher: Prentice Hall
Total Pages: 288
Release: 1977
Genre: Mathematics
ISBN:

This text is intended for an advanced undergraduate (having taken linear algebra and multivariable calculus). It provides the necessary background for a more abstract course in differential geometry. The inclusion of diagrams is done without sacrificing the rigor of the material. For all readers interested in differential geometry.

Modern Differential Geometry of Curves and Surfaces with Mathematica

Modern Differential Geometry of Curves and Surfaces with Mathematica
Author: Elsa Abbena
Publisher: CRC Press
Total Pages: 1024
Release: 2017-09-06
Genre: Mathematics
ISBN: 1351992201

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.