Satellite Measurements Of Clouds And Precipitation
Download Satellite Measurements Of Clouds And Precipitation full books in PDF, epub, and Kindle. Read online free Satellite Measurements Of Clouds And Precipitation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tanvir Islam |
Publisher | : Elsevier |
Total Pages | : 366 |
Release | : 2017-10-18 |
Genre | : Science |
ISBN | : 0128104384 |
Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. - Presents new approaches in the field, along with further research opportunities, based on the latest satellite data - Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences - Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field
Author | : Constantin Andronache |
Publisher | : Springer |
Total Pages | : 288 |
Release | : 2018-02-21 |
Genre | : Technology & Engineering |
ISBN | : 3319725831 |
This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.
Author | : Hirohiko Masunaga |
Publisher | : |
Total Pages | : 0 |
Release | : 2022 |
Genre | : |
ISBN | : 9789811922442 |
This book provides a thorough introductory description of the physical principles underlying the satellite remote sensing of clouds and precipitation. A diverse collection of satellite sensors is covered, including imagers, radars, and sounders over a broad spectral range from visible to microwave radiation. The progress in satellite instrument technology during the past two decades as represented by the Tropical Rainfall Measuring Mission (TRMM), CloudSat, and Global Measurement Mission (GPM) satellites has drastically improved our capability of measuring clouds and precipitation across the globe. At the same time, such rapid progress makes it increasingly challenging for scientists without specialized skills in remote sensing to fully grasp how satellite measurements are being made. This book is designed to mitigate that challenge. The targeted readers are graduate students and professional scientists seeking an extended summary of the theoretical background behind observations from space, ranging from fundamental physics (the statistical mechanics and radiative processes, for instance) to more practical levels of theory such as retrieval algorithm design.
Author | : V. Levizzani |
Publisher | : Springer Science & Business Media |
Total Pages | : 738 |
Release | : 2007-05-11 |
Genre | : Science |
ISBN | : 1402058357 |
No other book can offer such a powerful tool to understand the basics of remote sensing for precipitation, to make use of existing products and to have a glimpse of the near future missions and instruments. This book features state-of-the-art rainfall estimation algorithms, validation strategies, and precipitation modeling. More than 20 years after the last book on the subject the worldwide precipitation community has produced a comprehensive overview of its activities, achievements, ongoing research and future plans.
Author | : Silas C. Michaelides |
Publisher | : Springer Science & Business Media |
Total Pages | : 552 |
Release | : 2008-02-27 |
Genre | : Science |
ISBN | : 3540776559 |
This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 142 |
Release | : 2007-03-13 |
Genre | : Science |
ISBN | : 0309179351 |
The National Oceanic and Atmospheric Administration (NOAA) uses precipitation data in many applications including hurricane forecasting. Currently, NOAA uses data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in 1997 by NASA in cooperation with the Japan Aerospace Exploration Agency. NASA is now making plans to launch the Global Precipitation Measurement (GPM) mission in 2013 to succeed TRMM, which was originally intended as a 3 to 5 year mission but has enough fuel to orbit until 2012. The GPM mission consists of a "core" research satellite flying with other "constellation" satellites to provide global precipitation data products at three-hour intervals. This book is the second in a 2-part series from the National Research Council on the future of rainfall measuring missions. The book recommends that NOAA begin its GPM mission preparations as soon as possible and that NOAA develop a strategic plan for the mission using TRMM experience as a guide. The first book in the series, Assessment of the Benefits of Extending the Tropical Rainfall Measuring Mission (December 2004), recommended that the TRMM mission be extended as long as possible because of the quality, uniqueness, and many uses of its data. NASA has officially extended the TRMM mission until 2009.
Author | : Vincenzo Levizzani |
Publisher | : Springer Nature |
Total Pages | : 797 |
Release | : 2020-04-14 |
Genre | : Science |
ISBN | : 3030357988 |
This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
Author | : Renato Morbidelli |
Publisher | : Elsevier |
Total Pages | : 502 |
Release | : 2022-02-11 |
Genre | : Science |
ISBN | : 0128225440 |
Rainfall: Physical Process, Measurement, Data Analysis and Usage in Hydrological Investigations integrates different rainfall perspectives, from droplet formation and modeling developments to the experimental measurements and their analysis, to application in surface and subsurface hydrological investigations. Each chapter provides an updated representation of the involved subject with relative open problems and includes a case study at the end of the chapter. The book targets postgraduate readers studying meteorology, civil and environmental engineering, geophysics, agronomy and natural science, as well as practitioners working in the fields of hydrology, hydrogeology, agronomy and water resource management. Presents comprehensive coverage of rainfall-related topics, from the basic processes involved in the drop formation to data use and modeling Provides real-life examples for practical use in the form of a case study in each chapter
Author | : Ian Strangeways |
Publisher | : |
Total Pages | : 312 |
Release | : 2007 |
Genre | : Science |
ISBN | : |
A reference on precipitation for academic researchers and professionals in environmental science and climatology and water resource management.
Author | : Stanley Q. Kidder |
Publisher | : Elsevier |
Total Pages | : 481 |
Release | : 1995-09-12 |
Genre | : Science |
ISBN | : 0080572006 |
At last, a book that has what every atmospheric science and meteorology student should know about satellite meteorology: the orbits of satellites, the instruments they carry, the radiation they detect, and, most importantly, the fundamental atmospheric data that can be retrieved from their observations.Key Features* Of special interest are sections on:* Remote sensing of atmospheric temperature, trace gases, winds, cloud and aerosol data, precipitation, and radiation budget* Satellite image interpretation* Satellite orbits and navigation* Radiative transfer fundamentals