Safety For Particle Accelerators
Download Safety For Particle Accelerators full books in PDF, epub, and Kindle. Read online free Safety For Particle Accelerators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Thomas Otto |
Publisher | : Springer Nature |
Total Pages | : 157 |
Release | : 2020-12-29 |
Genre | : Science |
ISBN | : 3030570312 |
The use of non-standard technologies such as superconductivity, cryogenics and radiofrequency pose challenges for the safe operation of accelerator facilities that cannot be addressed using only best practice from occupational safety in conventional industry. This book introduces readers to different occupational safety issues at accelerator facilities and is directed to managers, scientists, technical personnel and students working at current or future accelerator facilities. While the focus is on occupational safety – how to protect the people working at these facilities – the book also touches on “machine safety” – how to prevent accelerators from doing structural damage to themselves. This open access book offers a first introduction to safety at accelerator facilities. Presenting an overview of the safety-related aspects of the specific technologies employed in particle accelerators, it highlights the potential hazards at such facilities and current prevention and protection measures. It closes with a review of safety management and organization at accelerator facilities.
Author | : National Council on Radiation Protection and Measurements |
Publisher | : National Council of Teachers of English |
Total Pages | : 526 |
Release | : 2003 |
Genre | : Science |
ISBN | : |
The purpose of this Report is to provide design guidelines for radiation protection, and to identify those aspects of radiological safety that are of major, or even unique, importance to the operation of particle accelerator installations and to suggest methods by which safe operation may be achieved. The report is written from an engineering physics viewpoint and is intended to be useful to those engaged in the design and operation of accelerators, particularly in smaller institutions and organizations that do not have a large radiological-protection staff.
Author | : Jay Flanz |
Publisher | : CRC Press |
Total Pages | : 492 |
Release | : 2022-01-18 |
Genre | : Science |
ISBN | : 1000528065 |
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.
Author | : William P. Swanson |
Publisher | : Bernan Press(PA) |
Total Pages | : 350 |
Release | : 1979 |
Genre | : Business & Economics |
ISBN | : |
Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.
Author | : Thomas Otto |
Publisher | : |
Total Pages | : 148 |
Release | : 2021 |
Genre | : Electronic books |
ISBN | : 9783030570330 |
The use of non-standard technologies such as superconductivity, cryogenics and radiofrequency pose challenges for the safe operation of accelerator facilities that cannot be addressed using only best practice from occupational safety in conventional industry. This book introduces readers to different occupational safety issues at accelerator facilities and is directed to managers, scientists, technical personnel and students working at current or future accelerator facilities. While the focus is on occupational safety - how to protect the people working at these facilities - the book also touches on "machine safety" - how to prevent accelerators from doing structural damage to themselves. This open access book offers a first introduction to safety at accelerator facilities. Presenting an overview of the safety-related aspects of the specific technologies employed in particle accelerators, it highlights the potential hazards at such facilities and current prevention and protection measures. It closes with a review of safety management and organization at accelerator facilities.
Author | : Stanley Humphries |
Publisher | : Courier Corporation |
Total Pages | : 588 |
Release | : 2013-09-11 |
Genre | : Science |
ISBN | : 0486320634 |
This authoritative text offers a unified, programmed summary of the principles underlying all charged particle accelerators — it also doubles as a reference collection of equations and material essential to accelerator development and beam applications. The only text that covers linear induction accelerators, the work contains straightforward expositions of basic principles rather than detailed theories of specialized areas. 1986 edition.
Author | : J. Donald Cossairt |
Publisher | : CRC Press |
Total Pages | : 306 |
Release | : 2019-05-06 |
Genre | : Science |
ISBN | : 0429958498 |
Choice Recommended Title, January 2020 Providing a vital resource in tune with the massive advancements in accelerator technologies that have taken place over the past 50 years, Accelerator Radiation Physics for Personnel and Environmental Protection is a comprehensive reference for accelerator designers, operators, managers, health and safety staff, and governmental regulators. Up-to-date with the latest developments in the field, it allows readers to effectively work together to ensure radiation safety for workers, to protect the environment, and adhere to all applicable standards and regulations. This book will also be of interest to graduate and advanced undergraduate students in physics and engineering who are studying accelerator physics. Features: Explores accelerator radiation physics and the latest results and research in a comprehensive single volume, fulfilling a need in the market for an up-to-date book on this topic Contains problems designed to enhance learning Addresses undergraduates with a background in math and/or science
Author | : Ralph H. Thomas |
Publisher | : |
Total Pages | : 473 |
Release | : 1988 |
Genre | : Proton accelerators |
ISBN | : |
Author | : IAEA |
Publisher | : International Atomic Energy Agency |
Total Pages | : 102 |
Release | : 2020-08-18 |
Genre | : Technology & Engineering |
ISBN | : 9201057229 |
Radioisotopes are used worldwide in a range of medical, industrial, research and academic applications. A large proportion of these radioisotopes are produced in particle accelerators, and the number of institutions that operate linear accelerators or cyclotrons and manufacture and distribute radiopharmaceuticals, for example, is significant and increasing. The production of radioisotopes using particle accelerators poses significant radiation hazards to workers, members of the public, and the environment when accelerators are operated without adequate radiation safety measures. This Safety Guide provides practical guidance for implementing radiation protection and safety measures in such facilities involved in the production and use of radioisotopes.
Author | : Andrzej Wolski |
Publisher | : World Scientific |
Total Pages | : 606 |
Release | : 2014-01-21 |
Genre | : Science |
ISBN | : 1783262796 |
Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.