ROC Curves for Continuous Data

ROC Curves for Continuous Data
Author: Wojtek J. Krzanowski
Publisher: CRC Press
Total Pages: 256
Release: 2009-05-21
Genre: Business & Economics
ISBN: 1439800227

Since ROC curves have become ubiquitous in many application areas, the various advances have been scattered across disparate articles and texts. ROC Curves for Continuous Data is the first book solely devoted to the subject, bringing together all the relevant material to provide a clear understanding of how to analyze ROC curves.The fundamenta

Statistical Evaluation of Diagnostic Performance

Statistical Evaluation of Diagnostic Performance
Author: Kelly H. Zou
Publisher: CRC Press
Total Pages: 243
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439812233

Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva

The Handbook of Medical Image Perception and Techniques

The Handbook of Medical Image Perception and Techniques
Author: Ehsan Samei
Publisher: Cambridge University Press
Total Pages: 1478
Release: 2018-12-13
Genre: Science
ISBN: 1108168817

A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.

Statistical Methods in Diagnostic Medicine

Statistical Methods in Diagnostic Medicine
Author: Xiao-Hua Zhou
Publisher: John Wiley & Sons
Total Pages: 597
Release: 2014-08-21
Genre: Medical
ISBN: 1118626044

Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.

Analyzing Receiver Operating Characteristic Curves with SAS

Analyzing Receiver Operating Characteristic Curves with SAS
Author: Mithat Gonen
Publisher: SAS Press
Total Pages: 0
Release: 2007
Genre: Computers
ISBN: 9781599942988

As a diagnostic decision-making tool, receiver operating characteristic (ROC) curves provide a comprehensive and visually attractive way to summarize the accuracy of predictions. They are used extensively in medical diagnosis and increasingly in fields such as data mining, credit scoring, weather forecasting, and psychometry. In Analyzing Receiver Operating Characteristic Curves with SAS, author Mithat Gonen illustrates the many existing SAS procedures that can be tailored to produce ROC curves and expands upon further analyses using other SAS procedures and macros. Both parametric and nonparametric methods for analyzing ROC curves are covered in detail. Topics addressed include: Appropriate methods for binary, ordinal, and continuous measures Computations using PROC FREQ, PROC LOGISTIC, PROC NLMIXED, and macros Comparing the ROC curves of several markers and adjusting them for covariates ROC curves with censored data Using the ROC curve for evaluating multivariable prediction models via bootstrap and cross-validation ROC curves in SAS Enterprise Miner And more! Written for any statistician interested in learning more about ROC curve methodology, the book assumes readers have a basic understanding of regression procedures and moderate familiarity with Base SAS and SAS/STAT. Some familiarity with SAS/GRAPH is helpful but not essential. This book is part of the SAS Press program.

Hands-On Predictive Analytics with Python

Hands-On Predictive Analytics with Python
Author: Alvaro Fuentes
Publisher: Packt Publishing Ltd
Total Pages: 320
Release: 2018-12-28
Genre: Computers
ISBN: 1789134544

Step-by-step guide to build high performing predictive applications Key FeaturesUse the Python data analytics ecosystem to implement end-to-end predictive analytics projectsExplore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanationsLearn to deploy a predictive model's results as an interactive applicationBook Description Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages. The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model. Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics. By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming. What you will learnGet to grips with the main concepts and principles of predictive analyticsLearn about the stages involved in producing complete predictive analytics solutionsUnderstand how to define a problem, propose a solution, and prepare a datasetUse visualizations to explore relationships and gain insights into the datasetLearn to build regression and classification models using scikit-learnUse Keras to build powerful neural network models that produce accurate predictionsLearn to serve a model's predictions as a web applicationWho this book is for This book is for data analysts, data scientists, data engineers, and Python developers who want to learn about predictive modeling and would like to implement predictive analytics solutions using Python's data stack. People from other backgrounds who would like to enter this exciting field will greatly benefit from reading this book. All you need is to be proficient in Python programming and have a basic understanding of statistics and college-level algebra.

Microarray Bioinformatics

Microarray Bioinformatics
Author: Verónica Bolón-Canedo
Publisher: Humana
Total Pages: 299
Release: 2019-05-22
Genre: Science
ISBN: 9781493994410

This book provides a comprehensive, interdisciplinary collection of the main, up-to-date methods, tools, and techniques for microarray data analysis, covering the necessary steps for the acquisition of the data, its preprocessing, and its posterior analysis. Featuring perspectives from biology, computer science, and statistics, the volume explores machine learning methods such as clustering, feature selection, classification, data normalization, and missing value imputation, as well as the statistical analysis of the data and the most popular computer tools to analyze microarray data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that will aid researchers in getting successful results. Cutting-edge and authoritative, Microarray Bioinformatics serves as an ideal guide for researchers and graduate students in bioinformatics, with basic knowledge in biology and computer science, and with a view to work with microarray datasets.

Feature Engineering and Selection

Feature Engineering and Selection
Author: Max Kuhn
Publisher: CRC Press
Total Pages: 266
Release: 2019-07-25
Genre: Business & Economics
ISBN: 1351609467

The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Data Science and Social Research II

Data Science and Social Research II
Author: Paolo Mariani
Publisher: Springer Nature
Total Pages: 391
Release: 2020-11-25
Genre: Social Science
ISBN: 3030512223

The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019.