Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods
Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
Total Pages: 492
Release: 1998
Genre: Nonparametric statistics
ISBN:

Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Robustness of Statistical Methods and Nonparametric Statistics

Robustness of Statistical Methods and Nonparametric Statistics
Author: Dieter Rasch
Publisher: Springer Science & Business Media
Total Pages: 177
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400965281

This volume contains most of the invited and contributed papers presented at the Conference on Robustness of Statistical Methods and Nonparametric Statistics held in the castle oj'Schwerin, Mai 29 - June 4 1983. This conference was organized by the Mathematical Society of the GDR in cooperation with the Society of Physical and Mathematical Biology of the GDR, the GDR-Region of the International Biometric Society and the Academy of Agricultural Sciences of the GDR. All papers included were thoroughly reviewed by scientist listed under the heading "Editorial Collabora tories·'. Some contributions, we are sorry to report, were not recommended for publi cation by the rf'vif'wers and do not appear in these proceedings. The editors thank the reviewers for their valuable comments and suggestions. The conference was organizf'd bv a Programme Committee, its chairman was Prof. Dr. Dieter Rasch (Research Centre of Animal Production, Dummerstorf-Rostock). The members of the Programme Committee were Prof. Dr., Johannes Adam (Martin-Luther-University Halle) Prof. Dr. Heinz Ahrens (Academy of Sciences of the GDR, Berlin) Doz. Dr. Jana Jureckova (Charles University Praha) Prof. Dr. Moti Lal Tiku (McMaster University, Hamilton, Ontario) The aim of the conference was to discuss several aspects of robustness but mainly to present new results regarding the robustness of classical statistical methods especially tests, confidence estimations, and selection procedures, and to compare their perfor mance with nonparametric procedures. Robustness in this sens~ is understood as intensivity against. violation of the normal assumption.

Robust Statistics

Robust Statistics
Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
Total Pages: 466
Release: 2019-01-04
Genre: Mathematics
ISBN: 1119214688

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

A Parametric Approach to Nonparametric Statistics

A Parametric Approach to Nonparametric Statistics
Author: Mayer Alvo
Publisher: Springer
Total Pages: 277
Release: 2018-10-12
Genre: Mathematics
ISBN: 3319941534

This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods
Author: Thomas P. Hettmansperger
Publisher: CRC Press
Total Pages: 554
Release: 2010-12-20
Genre: Mathematics
ISBN: 1439809097

Presenting an extensive set of tools and methods for data analysis, Robust Nonparametric Statistical Methods, Second Edition covers univariate tests and estimates with extensions to linear models, multivariate models, times series models, experimental designs, and mixed models. It follows the approach of the first edition by developing rank-based m

Robust Statistical Methods with R, Second Edition

Robust Statistical Methods with R, Second Edition
Author: Jana Jurečková
Publisher: CRC Press
Total Pages: 255
Release: 2019-05-29
Genre: Mathematics
ISBN: 1351975129

The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics. Features • Provides a systematic, practical treatment of robust statistical methods • Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior • The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests • Illustrates the small sensitivity of the rank procedures in the measurement error model • Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book’s website

Robust Statistics

Robust Statistics
Author: Ricardo A. Maronna
Publisher: Wiley
Total Pages: 436
Release: 2006-05-12
Genre: Mathematics
ISBN: 9780470010921

Classical statistical techniques fail to cope well with deviations from a standard distribution. Robust statistical methods take into account these deviations while estimating the parameters of parametric models, thus increasing the accuracy of the inference. Research into robust methods is flourishing, with new methods being developed and different applications considered. Robust Statistics sets out to explain the use of robust methods and their theoretical justification. It provides an up-to-date overview of the theory and practical application of the robust statistical methods in regression, multivariate analysis, generalized linear models and time series. This unique book: Enables the reader to select and use the most appropriate robust method for their particular statistical model. Features computational algorithms for the core methods. Covers regression methods for data mining applications. Includes examples with real data and applications using the S-Plus robust statistics library. Describes the theoretical and operational aspects of robust methods separately, so the reader can choose to focus on one or the other. Supported by a supplementary website featuring time-limited S-Plus download, along with datasets and S-Plus code to allow the reader to reproduce the examples given in the book. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is ideal for researchers, practitioners and graduate students of statistics, electrical, chemical and biochemical engineering, and computer vision. There is also much to benefit researchers from other sciences, such as biotechnology, who need to use robust statistical methods in their work.

Nonparametric Methods

Nonparametric Methods
Author: P. R. Krishnaiah
Publisher: Elsevier Health Sciences
Total Pages: 1016
Release: 1984
Genre: Mathematics
ISBN:

Classical developments. Linear models. Order statistics and empitical distribution. Estimation procedures. Stochastic aproximation and density estimation. Life testing and reliability. Miscellaneous topics. Applications. Tables.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
Total Pages: 713
Release: 2012-01-12
Genre: Mathematics
ISBN: 0123869838

"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

Statistical Methods in Water Resources

Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
Total Pages: 539
Release: 1993-03-03
Genre: Science
ISBN: 0080875084

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.