Robust Pricing of European Options with Wavelets and the Characteristic Function

Robust Pricing of European Options with Wavelets and the Characteristic Function
Author: Luis Ortiz-Gracia
Publisher:
Total Pages: 27
Release: 2013
Genre:
ISBN:

We present a novel method for pricing European options based on the wavelet approximation (WA) method and the characteristic function. We focus on the discounted expected payoff pricing formula, and compute it by means of wavelets. We approximate the density function associated to the underlying asset price process by a finite combination of $j$th order B-splines, and recover the coefficients of the approximation from the characteristic function. Two variants for wavelet approximation will be presented, where the second variant adaptively determines the range of integration. The compact support of a B-splines basis enables us to price options in a robust way, even in cases where Fourier-based pricing methods may show weaknesses. The method appears to be particularly robust for pricing long-maturity options, fat tailed distributions, as well as staircase-like density functions encountered in portfolio loss computations.

American-Type Options

American-Type Options
Author: Dmitrii S. Silvestrov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 672
Release: 2015-03-03
Genre: Mathematics
ISBN: 3110389908

The book gives a systematical presentation of stochastic approximation methods for discrete time Markov price processes. Advanced methods combining backward recurrence algorithms for computing of option rewards and general results on convergence of stochastic space skeleton and tree approximations for option rewards are applied to a variety of models of multivariate modulated Markov price processes. The principal novelty of presented results is based on consideration of multivariate modulated Markov price processes and general pay-off functions, which can depend not only on price but also an additional stochastic modulating index component, and use of minimal conditions of smoothness for transition probabilities and pay-off functions, compactness conditions for log-price processes and rate of growth conditions for pay-off functions. The volume presents results on structural studies of optimal stopping domains, Monte Carlo based approximation reward algorithms, and convergence of American-type options for autoregressive and continuous time models, as well as results of the corresponding experimental studies.

Extended Abstracts Summer 2015

Extended Abstracts Summer 2015
Author: Josep Díaz
Publisher: Birkhäuser
Total Pages: 135
Release: 2017-02-24
Genre: Mathematics
ISBN: 3319517538

This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been extensively studied. In turn, the book’s second part is devoted to mathematical and computational methods applied to the pricing of financial contracts and the measurement of financial risks. The tools and techniques used to tackle these problems cover a wide spectrum of fields, like stochastic calculus, numerical analysis, partial differential equations, statistics and econometrics. Quantitative Finance is a highly active field of research and is increasingly attracting the interest of academics and practitioners alike. The material presented addresses a wide variety of new challenges for this audience.

Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes

Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes
Author: Cornelis W Oosterlee
Publisher: World Scientific
Total Pages: 1310
Release: 2019-10-29
Genre: Business & Economics
ISBN: 1786347962

This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.Supplementary Material:Solutions Manual is available to instructors who adopt this textbook for their courses. Please contact [email protected].

Exotic Option Pricing and Advanced Lévy Models

Exotic Option Pricing and Advanced Lévy Models
Author: Andreas Kyprianou
Publisher: John Wiley & Sons
Total Pages: 344
Release: 2006-06-14
Genre: Business & Economics
ISBN: 0470017201

Since around the turn of the millennium there has been a general acceptance that one of the more practical improvements one may make in the light of the shortfalls of the classical Black-Scholes model is to replace the underlying source of randomness, a Brownian motion, by a Lévy process. Working with Lévy processes allows one to capture desirable distributional characteristics in the stock returns. In addition, recent work on Lévy processes has led to the understanding of many probabilistic and analytical properties, which make the processes attractive as mathematical tools. At the same time, exotic derivatives are gaining increasing importance as financial instruments and are traded nowadays in large quantities in OTC markets. The current volume is a compendium of chapters, each of which consists of discursive review and recent research on the topic of exotic option pricing and advanced Lévy markets, written by leading scientists in this field. In recent years, Lévy processes have leapt to the fore as a tractable mechanism for modeling asset returns. Exotic option values are especially sensitive to an accurate portrayal of these dynamics. This comprehensive volume provides a valuable service for financial researchers everywhere by assembling key contributions from the world's leading researchers in the field. Peter Carr, Head of Quantitative Finance, Bloomberg LP. This book provides a front-row seat to the hottest new field in modern finance: options pricing in turbulent markets. The old models have failed, as many a professional investor can sadly attest. So many of the brightest minds in mathematical finance across the globe are now in search of new, more accurate models. Here, in one volume, is a comprehensive selection of this cutting-edge research. Richard L. Hudson, former Managing Editor of The Wall Street Journal Europe, and co-author with Benoit B. Mandelbrot of The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward

High-Performance Computing in Finance

High-Performance Computing in Finance
Author: M. A. H. Dempster
Publisher: CRC Press
Total Pages: 648
Release: 2018-02-21
Genre: Computers
ISBN: 1315354691

High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.

Extension of the SWIFT Option Pricing Scheme for European Options Calibration Under Heston Stochastic Volatility Model

Extension of the SWIFT Option Pricing Scheme for European Options Calibration Under Heston Stochastic Volatility Model
Author: Eudald Romo Grau
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:

A Heston model calibration technique is presented for European options under the Heston model. The novel Shannon Wavelets Inverse Fourier Technique (SWIFT) is extended for European option price calibration (previously it was used only for pricing European, Asian, barrier, and Bermudan options). This method has different expressions and speed-up techniques, adequate to different set-ups. These are discussed and new expressions and properties are presented for the gradient computation and option calibration. The Heston characteristic function expression recently proposed by \cite{cui17} is used in the SWIFT implementation due to its analytic gradient and its continuity properties. The time performance, robustness, and convergence under set-ups representative of real markets is studied for different implementations of the SWIFT technique and compared with the option calibration scheme presented by \cite{cui17} The SWIFT implementations are coded in C++ and uploaded to a public GitHub repository. The libray implements several of the different SWIFT expressions for GBM and Heston European options.

Pricing of European Options Using Empirical Characteristic Functions

Pricing of European Options Using Empirical Characteristic Functions
Author:
Publisher:
Total Pages: 111
Release: 2008
Genre: Characteristic functions
ISBN:

Pricing problems of financial derivatives are among the most important ones in Quantitative Finance. Since 1973 when a Nobel prize winning model was introduced by Black, Merton and Scholes the Brownian Motion (BM) process gained huge attention of professionals professionals. It is now known, however, that stock market log-returns do not follow the very popular BM process. Derivative pricing models which are based on more general Lévy processes tend to perform better. --Carr & Madan (1999) and Lewis (2001) (CML) developed a method for vanilla options valuation based on a characteristic function of asset log-returns assuming that they follow a Lévy process. Assuming that at least part of the problem is in adequate modeling of the distribution of log-returns of the underlying price process, we use instead a nonparametric approach in the CML formula and replaced the unknown characteristic function with its empirical version, the Empirical Characteristic Functions (ECF). We consider four modifications of this model based on the ECF. The first modification requires only historical log-returns of the underlying price process. The other three modifications of the model need, in addition, a calibration based on historical option prices. We compare their performance based on the historical data of the DAX index and on ODAX options written on the index between the 1st of June 2006 and the 17th of May 2007. The resulting pricing errors show that one of our models performs, at least in the cases considered in the project, better than the Carr & Madan (1999) model based on calibration of a parametric Lévy model, called a VG model. --Our study seems to confirm a necessity of using implied parameters, apart from an adequate modeling of the probability distribution of the asset log-returns. It indicates that to precisely reproduce behaviour of the real option prices yet other factors like stochastic volatility need to be included in the option pricing model. Fortunately the discrepancies between our model and real option prices are reduced by introducing the implied parameters which seem to be easily modeled and forecasted using a mixture of regression and time series models. Such approach is computationaly less expensive than the explicit modeling of the stochastic volatility like in the Heston (1993) model and its modifications.

A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options

A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options
Author: Luis Ortiz-Gracia
Publisher:
Total Pages: 23
Release: 2015
Genre:
ISBN:

In the search for robust, accurate and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon Wavelets Inverse Fourier Technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of sharp quantitative error bounds.The nature of the local Shannon wavelets basis enables us to adaptively determine the proper size of the computational interval.Numerical experiments on European-style options confirm the bounds, robustness and efficiency.