Markov Decision Processes with Applications to Finance

Markov Decision Processes with Applications to Finance
Author: Nicole Bäuerle
Publisher: Springer Science & Business Media
Total Pages: 393
Release: 2011-06-06
Genre: Mathematics
ISBN: 3642183247

The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).

Handbook of Markov Decision Processes

Handbook of Markov Decision Processes
Author: Eugene A. Feinberg
Publisher: Springer Science & Business Media
Total Pages: 560
Release: 2012-12-06
Genre: Business & Economics
ISBN: 1461508053

Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Constrained Markov Decision Processes

Constrained Markov Decision Processes
Author: Eitan Altman
Publisher: Routledge
Total Pages: 256
Release: 2021-12-17
Genre: Mathematics
ISBN: 1351458248

This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes
Author: Vikram Krishnamurthy
Publisher: Cambridge University Press
Total Pages: 491
Release: 2016-03-21
Genre: Mathematics
ISBN: 1107134609

This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Engineering Decision Making and Risk Management

Engineering Decision Making and Risk Management
Author: Jeffrey W. Herrmann
Publisher: John Wiley & Sons
Total Pages: 356
Release: 2015-04-06
Genre: Business & Economics
ISBN: 1118919335

IIE/Joint Publishers Book of the Year Award 2016! Awarded for ‘an outstanding published book that focuses on a facet of industrial engineering, improves education, or furthers the profession’. Engineering Decision Making and Risk Management emphasizes practical issues and examples of decision making with applications in engineering design and management Featuring a blend of theoretical and analytical aspects, this book presents multiple perspectives on decision making to better understand and improve risk management processes and decision-making systems. Engineering Decision Making and Risk Management uniquely presents and discusses three perspectives on decision making: problem solving, the decision-making process, and decision-making systems. The author highlights formal techniques for group decision making and game theory and includes numerical examples to compare and contrast different quantitative techniques. The importance of initially selecting the most appropriate decision-making process is emphasized through practical examples and applications that illustrate a variety of useful processes. Presenting an approach for modeling and improving decision-making systems, Engineering Decision Making and Risk Management also features: Theoretically sound and practical tools for decision making under uncertainty, multi-criteria decision making, group decision making, the value of information, and risk management Practical examples from both historical and current events that illustrate both good and bad decision making and risk management processes End-of-chapter exercises for readers to apply specific learning objectives and practice relevant skills A supplementary website with instructional support material, including worked solutions to the exercises, lesson plans, in-class activities, slides, and spreadsheets An excellent textbook for upper-undergraduate and graduate students, Engineering Decision Making and Risk Management is appropriate for courses on decision analysis, decision making, and risk management within the fields of engineering design, operations research, business and management science, and industrial and systems engineering. The book is also an ideal reference for academics and practitioners in business and management science, operations research, engineering design, systems engineering, applied mathematics, and statistics.

Continuous-Time Markov Decision Processes

Continuous-Time Markov Decision Processes
Author: Xianping Guo
Publisher: Springer Science & Business Media
Total Pages: 240
Release: 2009-09-18
Genre: Mathematics
ISBN: 3642025471

Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.

Risk-Sensitive Optimal Control

Risk-Sensitive Optimal Control
Author: Peter Whittle
Publisher:
Total Pages: 266
Release: 1990-05-11
Genre: Mathematics
ISBN:

The two major themes of this book are risk-sensitive control and path-integral or Hamiltonian formulation. It covers risk-sensitive certainty-equivalence principles, the consequent extension of the conventional LQG treatment and the path-integral formulation.

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
Total Pages: 436
Release: 2006-02-04
Genre: Mathematics
ISBN: 0387310711

This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Markov Decision Processes

Markov Decision Processes
Author: Martin L. Puterman
Publisher: John Wiley & Sons
Total Pages: 544
Release: 2014-08-28
Genre: Mathematics
ISBN: 1118625870

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Decision Analytics and Optimization in Disease Prevention and Treatment

Decision Analytics and Optimization in Disease Prevention and Treatment
Author: Nan Kong
Publisher: John Wiley & Sons
Total Pages: 430
Release: 2018-02-02
Genre: Business & Economics
ISBN: 1118960130

A systematic review of the most current decision models and techniques for disease prevention and treatment Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource of the most current decision models and techniques for disease prevention and treatment. With contributions from leading experts in the field, this important resource presents information on the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology. Designed to be accessible, in each chapter the text presents one decision problem with the related methodology to showcase the vast applicability of operations research tools and techniques in advancing medical decision making. This vital resource features the most recent and effective approaches to the quickly growing field of healthcare decision analytics, which involves cost-effectiveness analysis, stochastic modeling, and computer simulation. Throughout the book, the contributors discuss clinical applications of modeling and optimization techniques to assist medical decision making within complex environments. Accessible and authoritative, Decision Analytics and Optimization in Disease Prevention and Treatment: Presents summaries of the state-of-the-art research that has successfully utilized both decision analytics and optimization tools within healthcare operations research Highlights the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology Includes contributions by well-known experts from operations researchers to clinical researchers, and from data scientists to public health administrators Offers clarification on common misunderstandings and misnomers while shedding light on new approaches in this growing area Designed for use by academics, practitioners, and researchers, Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource for accessing the power of decision analytics and optimization tools within healthcare operations research.