Rigid Body Dynamics Algorithms

Rigid Body Dynamics Algorithms
Author: Roy Featherstone
Publisher: Springer
Total Pages: 276
Release: 2014-11-10
Genre: Education
ISBN: 1489975608

Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.

Robot Dynamics Algorithms

Robot Dynamics Algorithms
Author: Roy Featherstone
Publisher: Kluwer Academic Publishers
Total Pages: 211
Release: 1987-01-01
Genre: Technology & Engineering
ISBN: 9780898382303

Robot and Multibody Dynamics

Robot and Multibody Dynamics
Author: Abhinandan Jain
Publisher: Springer Science & Business Media
Total Pages: 512
Release: 2010-12-17
Genre: Technology & Engineering
ISBN: 1441972676

Robot and Multibody Dynamics: Analysis and Algorithms provides a comprehensive and detailed exposition of a new mathematical approach, referred to as the Spatial Operator Algebra (SOA), for studying the dynamics of articulated multibody systems. The approach is useful in a wide range of applications including robotics, aerospace systems, articulated mechanisms, bio-mechanics and molecular dynamics simulation. The book also: treats algorithms for simulation, including an analysis of complexity of the algorithms, describes one universal, robust, and analytically sound approach to formulating the equations that govern the motion of complex multi-body systems, covers a range of more advanced topics including under-actuated systems, flexible systems, linearization, diagonalized dynamics and space manipulators. Robot and Multibody Dynamics: Analysis and Algorithms will be a valuable resource for researchers and engineers looking for new mathematical approaches to finding engineering solutions in robotics and dynamics.

Modern Robotics

Modern Robotics
Author: Kevin M. Lynch
Publisher: Cambridge University Press
Total Pages: 545
Release: 2017-05-25
Genre: Computers
ISBN: 1107156300

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Rigid Body Dynamics of Mechanisms

Rigid Body Dynamics of Mechanisms
Author: Hubert Hahn
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2013-11-11
Genre: Technology & Engineering
ISBN: 3662048310

This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.

Dynamics of Parallel Robots

Dynamics of Parallel Robots
Author: Sébastien Briot
Publisher: Springer
Total Pages: 356
Release: 2015-06-22
Genre: Technology & Engineering
ISBN: 3319197886

This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.

Planning Algorithms

Planning Algorithms
Author: Steven M. LaValle
Publisher: Cambridge University Press
Total Pages: 844
Release: 2006-05-29
Genre: Computers
ISBN: 9780521862059

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Computer Animation

Computer Animation
Author: Rick Parent
Publisher: Elsevier
Total Pages: 626
Release: 2007-11-01
Genre: Computers
ISBN: 0080553850

Driven by the demands of research and the entertainment industry, the techniques of animation are pushed to render increasingly complex objects with ever-greater life-like appearance and motion. This rapid progression of knowledge and technique impacts professional developers, as well as students. Developers must maintain their understanding of conceptual foundations, while their animation tools become ever more complex and specialized. The second edition of Rick Parent's Computer Animation is an excellent resource for the designers who must meet this challenge. The first edition established its reputation as the best technically oriented animation text. This new edition focuses on the many recent developments in animation technology, including fluid animation, human figure animation, and soft body animation. The new edition revises and expands coverage of topics such as quaternions, natural phenomenon, facial animation, and inverse kinematics. The book includes up-to-date discussions of Maya scripting and the Maya C++ API, programming on real-time 3D graphics hardware, collision detection, motion capture, and motion capture data processing. - New up-to-the-moment coverage of hot topics like real-time 3D graphics, collision detection, fluid and soft-body animation and more! - Companion site with animation clips drawn from research & entertainment and code samples - Describes the mathematical and algorithmic foundations of animation that provide the animator with a deep understanding and control of technique

Dynamics of Multibody Systems

Dynamics of Multibody Systems
Author: Ahmed A. Shabana
Publisher: Cambridge University Press
Total Pages: 392
Release: 2005-06-30
Genre: Science
ISBN: 9781139446518

Dynamics of Multibody Systems, 3rd Edition, first published in 2005, introduces multibody dynamics, with an emphasis on flexible body dynamics. Many common mechanisms such as automobiles, space structures, robots and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale, multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. This revised third edition now includes important developments relating to the problem of large deformations and numerical algorithms as applied to flexible multibody systems. The book's wealth of examples and practical applications will be useful to graduate students, researchers, and practising engineers working on a wide variety of flexible multibody systems.

Dynamics of Multibody Systems

Dynamics of Multibody Systems
Author: Ahmed A. Shabana
Publisher: Cambridge University Press
Total Pages: 397
Release: 2013-09-02
Genre: Science
ISBN: 1107435889

This enhanced fourth edition of Dynamics of Multibody Systems includes an additional chapter that provides explanations of some of the fundamental issues addressed in the book, as well as new detailed derivations of some important problems. Many common mechanisms such as automobiles, space structures, robots and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. The book's wealth of examples and practical applications will be useful to graduate students, researchers and practising engineers working on a wide variety of flexible multibody systems.