Response Of Structures To Aircraft Generated Shock Waves
Download Response Of Structures To Aircraft Generated Shock Waves full books in PDF, epub, and Kindle. Read online free Response Of Structures To Aircraft Generated Shock Waves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Shock Wave-Boundary-Layer Interactions
Author | : Holger Babinsky |
Publisher | : Cambridge University Press |
Total Pages | : 481 |
Release | : 2011-09-12 |
Genre | : Technology & Engineering |
ISBN | : 1139498649 |
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Bibliography on Aeromedical Research, with Abstracts
Author | : Aerospace Medical Laboratory (U.S.) |
Publisher | : |
Total Pages | : 116 |
Release | : 1960 |
Genre | : Aviation medicine |
ISBN | : |
Explosion Blast Response of Composites
Author | : Adrian P. Mouritz |
Publisher | : Woodhead Publishing |
Total Pages | : 434 |
Release | : 2017-05-22 |
Genre | : Technology & Engineering |
ISBN | : 0081020937 |
Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. - Focuses on key aspects, including both modeling, analysis, and experimental work - Written by leading international experts from academia, defense agencies, and other organizations - Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications
Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1: Noise Sources
Author | : |
Publisher | : |
Total Pages | : 616 |
Release | : 1991 |
Genre | : |
ISBN | : |
The field of aeroacoustics has matured dramatically in the past two decades. Researchers have gained significant theoretical and experimental understanding of the noise generated by aircraft power plants and their components. In addition, airframe noise and interior noise have been investigated extensively. The physical understanding obtained from these efforts has resulted in the development of hardware capable of reducing community noise and of meeting strict noise certification requirements. Reductions in overall sound pressure level of 20 to 30 dB have been obtained for some types of power plants, while in the same period their installed power has increased significantly. Current quiet flight vehicle designs are based on information reported in a multitude of journals, conference proceeding, research reports, and specialized books. Each of these scientific publications represents only incremental steps in the evolution of our present understanding of the various aeroacoustic noise generation and propagation mechanisms and procedures for noise control.